Wearable-enabled algorithms for the estimation of parkinson’s symptoms evaluated in a continuous home monitoring setting using inertial sensors
dc.contributor.author | Crowe, Colum | en |
dc.contributor.author | Sica, Marco | en |
dc.contributor.author | Kenny, Lorna | en |
dc.contributor.author | O'Flynn, Brendan | en |
dc.contributor.author | Scott Mueller, David | en |
dc.contributor.author | Timmons, Suzanne | en |
dc.contributor.author | Barton, John | en |
dc.contributor.author | Tedesco, Salvatore | en |
dc.contributor.funder | Enterprise Ireland | en |
dc.contributor.funder | AbbVie | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2025-01-08T17:21:03Z | |
dc.date.available | 2025-01-08T17:21:03Z | |
dc.date.issued | 2024 | en |
dc.description.abstract | Motor symptoms such as tremor and bradykinesia can develop concurrently in Parkinson’s disease; thus, the ideal home monitoring system should be capable of tracking symptoms continuously despite background noise from daily activities. The goal of this study is to demonstrate the feasibility of detecting symptom episodes in a free-living scenario, providing a higher level of interpretability to aid AI-powered decision-making. Machine learning models trained on wearable sensor data from scripted activities performed by participants in the lab and clinician ratings of the video recordings of these tasks identified tremor, bradykinesia, and dyskinesia in the supervised lab environment with a balanced accuracy of 83%, 75%, and 81%, respectively, when compared to the clinician ratings. The performance of the same models when evaluated on data from subjects performing unscripted activities unsupervised in their own homes achieved a balanced accuracy of 63%, 63%, and 67%, respectively, in comparison to self-assessment patient diaries, further highlighting their limitations. The ankle-worn sensor was found to be advantageous for the detection of dyskinesias but did not show an added benefit for tremor and bradykinesia detection here. | en |
dc.description.sponsorship | Enterprise Ireland (EI), AbbVie, Inc. (Grant Number: IP 2017 0625) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Crowe, C., Sica, M., Kenny, L., O’Flynn, B., Scott Mueller, D., Timmons, S., Barton, J. and Tedesco, S. (2024) ‘Wearable-enabled algorithms for the estimation of parkinson’s symptoms evaluated in a continuous home monitoring setting using inertial sensors’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, pp. 3828–3836. https://doi.org/10.1109/TNSRE.2024.3477003 | en |
dc.identifier.doi | https://doi.org/10.1109/TNSRE.2024.3477003 | en |
dc.identifier.eissn | 1558-0210 | en |
dc.identifier.endpage | 3836 | en |
dc.identifier.issn | 1534-4320 | en |
dc.identifier.journaltitle | IEEE Transactions on Neural Systems and Rehabilitation Engineering | en |
dc.identifier.other | 39383074 | en |
dc.identifier.startpage | 3828 | en |
dc.identifier.uri | https://hdl.handle.net/10468/16797 | |
dc.identifier.volume | 32 | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Maternity/Adoptive Leave Allowance/12/RC/2289-P2s/IE/INSIGHT Phase 2/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3918/IE/Confirm Centre for Smart Manufacturing/ | en |
dc.rights | © 2024, The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Monitoring | en |
dc.subject | Motors | en |
dc.subject | Wrist | en |
dc.subject | Diseases | en |
dc.subject | Biomedical monitoring | en |
dc.subject | Ankle | en |
dc.subject | Accuracy | en |
dc.subject | Data models | en |
dc.subject | Data collection | en |
dc.subject | Wearable devices | en |
dc.title | Wearable-enabled algorithms for the estimation of parkinson’s symptoms evaluated in a continuous home monitoring setting using inertial sensors | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- Wearable-Enabled_Algorithms_for_the_Estimation_of_Parkinsons_Symptoms_Evaluated_in_a_Continuous_Home_Monitoring_Setting_Using_Inertial_Sensors.pdf
- Size:
- 3.56 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
Loading...
- Name:
- supp1-3477003.docx
- Size:
- 925.31 KB
- Format:
- Microsoft Word XML
- Description:
- Supplemental Items
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: