Quantifying the impact of base station metrics on LTE resource block prediction accuracy

dc.contributor.authorRaca, Darijoen
dc.contributor.authorQuinlan, Jasonen
dc.contributor.authorZahran, Ahmeden
dc.contributor.authorSreenan, Cormac J.en
dc.contributor.authorGupta, Ritenen
dc.contributor.authorTiwari, Abhisheken
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2023-08-08T14:05:47Z
dc.date.available2023-08-08T14:05:47Z
dc.date.issued2023-05en
dc.description.abstractAccurate prediction of cellular link performance represents a corner stone for many adaptive applications, such as video streaming. State-of-the-art solutions focus on distributed device-based methods relying on historic throughput and PHY metrics obtained through device APIs. In this paper, we study the impact of centralised solutions that integrate information collected from other network nodes. Specifically, we develop and compare machine learning inference engines for both distributed and centralised approaches to predict the LTE physical resource blocks using ns3-simulation. Our results illustrate that network load represents the most important feature in the centralised approaches resulting in halving the RB prediction error to 14% in comparison to 28% for the distributed case.en
dc.description.sponsorshipScience Foundation Ireland (13/RC/2077 P2)en
dc.description.statusNot peer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRaca, D., Quinlan, J. J., Zahran, A. H., Sreenan, C. J., Gupta, R. and Tiwari, A. (2023) 'Quantifying the impact of base station metrics on LTE resource block prediction accuracy', IEEE International Conference on Computer Communications (INFOCOM 2023), New York, USA, 17-20 May, pp. 1-2. doi: 10.1109/INFOCOMWKSHPS57453.2023.10226095en
dc.identifier.doi10.1109/INFOCOMWKSHPS57453.2023.10226095
dc.identifier.endpage2
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/14797
dc.language.isoenen
dc.relation.ispartofIEEE International Conference on Computer Communications 17–20 May 2023, New York area, USAen
dc.rights© 2023, the Authors.en
dc.subjectCellular networken
dc.subjectMachine learningen
dc.subjectPhysical resource blocksen
dc.subjectLTEen
dc.subject4Gen
dc.titleQuantifying the impact of base station metrics on LTE resource block prediction accuracyen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Infocom_poster-CORA.pdf
Size:
88.66 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: