Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions
dc.contributor.author | Moreno-Indias, Isabel | |
dc.contributor.author | Lahti, Leo | |
dc.contributor.author | Nedyalkova, Miroslava | |
dc.contributor.author | Elbere, Ilze | |
dc.contributor.author | Roshchupkin, Gennady | |
dc.contributor.author | Adilovic, Muhamed | |
dc.contributor.author | Aydemir, Onder | |
dc.contributor.author | Bakir-Gungor, Burcu | |
dc.contributor.author | Pau, Enrique Carrillo De Santa | |
dc.contributor.author | D'Elia, Domenica | |
dc.contributor.author | Desai, Mahesh | |
dc.contributor.author | Falquet, Laurent | |
dc.contributor.author | Gundogdu, Aycan | |
dc.contributor.author | Hron, Karel | |
dc.contributor.author | Klammsteiner, Thomas | |
dc.contributor.author | Lopes, Marta B. | |
dc.contributor.author | Marcos-Zambrano, Laura Judith | |
dc.contributor.author | Marques, Cláudia | |
dc.contributor.author | Mason, Michael | |
dc.contributor.author | May, Patrick | |
dc.contributor.author | Pasic, Lejla | |
dc.contributor.author | Pio, Gianvito | |
dc.contributor.author | Pongor, Sándor | |
dc.contributor.author | Promponas, Vasilis J. | |
dc.contributor.author | Przymus, Piotr | |
dc.contributor.author | Saez-Rodriguez, Julio | |
dc.contributor.author | Sampri, Alexia | |
dc.contributor.author | Shigdel, Rajesh | |
dc.contributor.author | Stres, Blaz | |
dc.contributor.author | Suharoschi, Ramona | |
dc.contributor.author | Truu, Jaak | |
dc.contributor.author | Truica, Ciprian-Octavian | |
dc.contributor.author | Vilne, Baiba | |
dc.contributor.author | Vlachakis, Dimitrios P. | |
dc.contributor.author | Yilmaz, Ercüment | |
dc.contributor.author | Zeller, Georg | |
dc.contributor.author | Zomer, Aldert | |
dc.contributor.author | Gomez-Cabrero, David | |
dc.contributor.author | Claesson, Marcus J. | |
dc.contributor.funder | Instituto de Salud Carlos III | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.contributor.funder | Horizon 2020 | en |
dc.contributor.funder | Fonds National de la Recherche Luxembourg | en |
dc.contributor.funder | European Cooperation in Science and Technology | en |
dc.date.accessioned | 2022-11-10T12:33:15Z | |
dc.date.available | 2022-11-10T12:33:15Z | |
dc.date.issued | 2021-02 | |
dc.date.updated | 2022-11-10T11:32:44Z | |
dc.description.abstract | The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 "ML4Microbiome" that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies. | en |
dc.description.sponsorship | European Cooperation in Science and Technology (COST Action CA18131); Luxembourg National Research Fund (FNR) CORE (Grant C18/BM/12585940) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 635781 | en |
dc.identifier.citation | Moreno-Indias, I., Lahti, L., Nedyalkova, M., Elbere, I., Roshchupkin, G., Adilovic, M., Aydemir, O., Bakir-Gungor, B., Pau, E. C. D. S., D'Elia, D., Desai, M., Falquet, L., Gundogdu, A., Hron, K., Klammsteiner, T., Lopes, M. B., Marcos-Zambrano, L. J., Marques, C., Mason, M., May, P., Pasic, L., Pio, G., Pongor, S., Promponas, V. J., Przymus, P., Saez-Rodriguez, J., Sampri, A., Shigdel, R., Stres, B., Suharoschi, R., Truu, J., Truica, C-O., Vilne, B., Vlachakis, D. P., Yilmaz, E., Zeller, G., Zomer, A., Gomez-Cabrero, D. and Claesson, M. J. (2021) 'Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions', Frontiers In Microbiology, 12, 635781, (9pp). doi: 10.3389/fmicb.2021.635781 | en |
dc.identifier.doi | 10.3389/fmicb.2021.635781 | en |
dc.identifier.endpage | 9 | en |
dc.identifier.issn | 1664-302X | |
dc.identifier.journaltitle | Frontiers In Microbiology | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13846 | |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | Frontiers Media S.A. | en |
dc.relation.project | info:eu-repo/grantAgreement/AKA//295741/FI/Ecological modeling of the human gut microbiome: individuality, dynamics, and function in large population cohorts/ | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/H2020::CSA/857572/EU/Integration of knowledge and biobank resources in comprehensive translational approach for personalized prevention and treatment of metabolic disorders/INTEGROMED | en |
dc.rights | © 2021 Moreno-Indias, Lahti, Nedyalkova, Elbere, Roshchupkin, Adilovic, Aydemir, Bakir-Gungor, Santa Pau, D’Elia, Desai, Falquet, Gundogdu, Hron, Klammsteiner, Lopes,Marcos-Zambrano,Marques,Mason,May, Paši´c, Pio, Pongor, Promponas, Przymus, Saez-Rodriguez, Sampri, Shigdel, Stres, Suharoschi, Truu, Truic˘a, Vilne, Vlachakis, Yilmaz, Zeller, Zomer, Gómez-Cabrero and Claesson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Machine learning | en |
dc.subject | Microbiome | en |
dc.subject | ML4Microbiome | en |
dc.subject | Personalized medicine | en |
dc.subject | Biomarker identification | en |
dc.title | Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- fmicb-12-635781.pdf
- Size:
- 956.31 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
Loading...
- Name:
- Table_1_Statistical and Machine Learning Techniques in Human Microbiome Studies_ Contemporary Challenges and Solutions.XLSX
- Size:
- 20.55 KB
- Format:
- Microsoft Excel XML
- Description:
- Supplementary Material
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: