Compact modulators on silicon nitride waveguide platform via micro-transfer printing of thin-film lithium niobate

dc.contributor.authorBadri, S. Hadien
dc.contributor.authorKotlyar, Maria V.en
dc.contributor.authorDas, Risoven
dc.contributor.authorArafat, Yeasiren
dc.contributor.authorMoynihan, Owenen
dc.contributor.authorCorbett, Brianen
dc.contributor.authorO’Faolain, Liamen
dc.contributor.authorGhosh, Samiren
dc.contributor.funderHorizon 2020en
dc.contributor.funderResearch Irelanden
dc.contributor.funderHorizon Europeen
dc.date.accessioned2025-04-30T08:44:43Z
dc.date.available2025-04-30T08:44:43Z
dc.date.issued2025en
dc.description.abstractWe explore the use of micro-transfer printing (µTP) technology to integrate thin lithium niobate (LN) films onto silicon nitride (SiN) waveguides, facilitating the development of compact electro-optical modulators. Three modulator architectures are investigated: Mach-Zehnder interferometer (MZI), Fabry-Perot (FP) resonator, and side-coupled FP resonators. By acting as a photonic molecule, the proposed coupled FP resonators enable improved spectral engineering with new functionalities while maximizing the transmission and quality-factor (Q-factor) of the resonances. Design, simulations, fabrication method, and experimental results are presented, demonstrating the potential of µTP in advancing electro-optical modulators. The half-wave voltage-length product (VπL) of the fabricated devices decreases as the Q-factor increases achieving VπL = 10.5, 4.3, and 2.74 V.cm for MZI, FP, and photonic molecule modulators, respectively.en
dc.description.sponsorshipResearch Ireland (12/RC/2276_P2; SFI-IRC 21/PATH-S/9422; 22/US/3834, 749143); Horizon Europe (847652)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid11681en
dc.identifier.citationBadri, S. H., Kotlyar, M. V., Das, R., Arafat, Y., Moynihan, O., Corbett, B., O’Faolain, L. and Ghosh, S. (2025) 'Compact modulators on silicon nitride waveguide platform via micro-transfer printing of thin-film lithium niobate', Scientific Reports, 15(1), p.11681. DOI: 10.1038/s41598-025-95397-wen
dc.identifier.doi10.1038/s41598-025-95397-wen
dc.identifier.issn20452322en
dc.identifier.issued1
dc.identifier.journaltitleScientific Reportsen
dc.identifier.urihttps://hdl.handle.net/10468/17364
dc.identifier.volume15
dc.language.isoenen
dc.publisherNature Researchen
dc.relation.project12/RC/2276_P2
dc.relation.projectSFI-IRC 21/PATH-S/9422
dc.relation.project22/US/3834
dc.relation.project847652
dc.relation.project749143
dc.rights© 2025, the Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectLithiumen
dc.subjectSilicon nitrideen
dc.subjectArticleen
dc.subjectControlled studyen
dc.subjectElectric potentialen
dc.subjectHumanen
dc.subjectInterferometeren
dc.subjectPrintingen
dc.subjectSimulationen
dc.titleCompact modulators on silicon nitride waveguide platform via micro-transfer printing of thin-film lithium niobateen
dc.typeArticle (peer reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-025-95397-w.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Description:
Published Version