Vortex-induced chaotic mixing in wavy channels

Thumbnail Image
J80.pdf(3.44 MB)
Published Version
Lee, Wei-Koon
Taylor, P. H.
Borthwick, Alistair G. L.
Chuenkum, S.
Journal Title
Journal ISSN
Volume Title
Cambridge University Press
Research Projects
Organizational Units
Journal Issue
Mixing is studied in open-flow channels with conformally mapped wavy-wall profiles, using a point-vortex model in two-dimensional irrotational, incompressible mean flow. Unsteady dynamics of the separation bubble induced by oscillatory motion of point vortices located in the trough region produces chaotic mixing in the Lagrangian sense. Significant mass exchange between passive tracer particles inside and outside of the separation bubble forms an efficient mixing region which evolves in size as the vortex moves in the unsteady potential flow. The dynamics closely resembles that obtained by previous authors from numerical solutions of the unsteady Navier–Stokes equations for oscillatory unidirectional flow in a wavy channel. Of the wavy channels considered, the skew-symmetric form is most efficient at promoting passive mixing. Diffusion via gridless random walks increases lateral particle dispersion significantly at the expense of longitudinal particle dispersion due to the opposing effect of mass exchange at the front and rear of the particle ensemble. Active mixing in the wavy channel reveals that the fractal nature of the unstable manifold plays a crucial role in singular enhancement of productivity. Hyperbolic dynamics dominate over nonhyperbolicity which is restricted to the vortex core region. The model is simple yet qualitatively accurate, making it a potential candidate for the study of a wide range of vortex-induced transport and mixing problems.
Wavy channel , Separation bubble , Wavy-wall , Flow
WEI-KOON LEE, P. H. TAYLOR, A. G. L. BORTHWICK and S. CHUENKHUM (2010). Vortex-induced chaotic mixing in wavy channels. Journal of Fluid Mechanics, 654 , pp 501-538 doi:10.1017/S0022112010000674
Link to publisher’s version
© Cambridge University Press 2010