Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols

Loading...
Thumbnail Image
Date
2018
Authors
Abdullah, K. A.
McEntee, Mark F.
Reed, W.
Kench, P. L.
Journal Title
Journal ISSN
Volume Title
Publisher
John Wiley and Sons Ltd
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
Introduction: An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom. Methods: Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan® 500 phantom. Results: The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan® 500 phantom. Conclusions: A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
Description
Keywords
3D printing , Cardiac insert phantom , Computed tomography , Computer aided design (CAD) , Rapid prototyping
Citation
Abdullah, K. A., McEntee, M. F., Reed, W. and Kench, P. L. (2018) 'Development of an organ‐specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols', Journal of Medical Radiation Sciences, 65(3), pp.175-183. doi: 10.1002/jmrs.279
Link to publisher’s version