Indium segregation during III-V quantum wire and quantum dot formation on patterned substrates

dc.contributor.authorMoroni, Stefano T.
dc.contributor.authorDimastrodonato, Valeria
dc.contributor.authorChung, Tung-Hsun
dc.contributor.authorJuska, Gediminas
dc.contributor.authorGocaliƄska, Agnieszka M.
dc.contributor.authorVvedensky, Dimitri D.
dc.contributor.authorPelucchi, Emanuele
dc.contributor.funderHigher Education Authority
dc.contributor.funderScience Foundation Ireland
dc.date.accessioned2017-09-20T10:06:31Z
dc.date.available2017-09-20T10:06:31Z
dc.date.issued2015
dc.description.abstractWe report a model for metalorganic vapor-phase epitaxy on non-planar substrates, specifically V-grooves and pyramidal recesses, which we apply to the growth of InGaAs nanostructures. This model-based on a set of coupled reaction-diffusion equations, one for each facet in the system-accounts for the facet-dependence of all kinetic processes (e.g., precursor decomposition, adatom diffusion, and adatom lifetimes) and has been previously applied to account for the temperature-, concentration-, and temporal-dependence of AlGaAs nanostructures on GaAs(111)B surfaces with V-grooves and pyramidal recesses. In the present study, the growth of In(0.1)2Ga(0.88)As quantum wires at the bottom of V-grooves is used to determine a set of optimized kinetic parameters. Based on these parameters, we have modeled the growth of In0.25Ga0.75As nanostructures formed in pyramidal site-controlled quantum-dot systems, successfully producing a qualitative explanation for the temperature-dependence of their optical properties, which have been reported in previous studies. Finally, we present scanning electron and cross-sectional atomic force microscopy images which show previously unreported facetting at the bottom of the pyramidal recesses that allow quantum dot formation. (C) 2015 AIP Publishing LLC.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid164313
dc.identifier.citationMoroni, S. T., Dimastrodonato, V., Chung, T.-H., Juska, G., Gocalinska, A., Vvedensky, D. D. and Pelucchi, E. (2015) 'Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates', Journal of Applied Physics, 117(16), 164313 (7pp). doi: 10.1063/1.4919362en
dc.identifier.doi10.1063/1.4919362
dc.identifier.endpage7
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.issued16
dc.identifier.journaltitleJournal of Applied Physicsen
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/4713
dc.identifier.volume117
dc.language.isoenen
dc.publisherAIP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/10/IN.1/I3000/IE/Controlling deterministically engineered III-V nanostructures: towards quantum information devices/
dc.relation.urihttp://aip.scitation.org/doi/10.1063/1.4919362
dc.rights© 2015 AIP Publishing LLC. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Moroni, S. T., Dimastrodonato, V., Chung, T.-H., Juska, G., Gocalinska, A., Vvedensky, D. D. and Pelucchi, E. (2015) 'Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates', Journal of Applied Physics, 117(16), 164313 (7pp). doi: 10.1063/1.4919362 and may be found at http://aip.scitation.org/doi/10.1063/1.4919362en
dc.subjectQuantum dotsen
dc.subjectDiffusionen
dc.subjectQuantum wiresen
dc.subjectMetalorganic vapor phase epitaxyen
dc.subjectIII-V semiconductorsen
dc.subjectOptical-propertiesen
dc.subjectGrowthen
dc.subjectHeterostructuresen
dc.subjectPyramidsen
dc.titleIndium segregation during III-V quantum wire and quantum dot formation on patterned substratesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3054.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Published Version