Intra-tumoural heterogeneity characterization through texture and colour analysis for differentiation of non-small cell lung carcinoma subtypes
dc.contributor.author | Ma, Yuan | |
dc.contributor.author | Feng, Wei | |
dc.contributor.author | Wu, Zhiyuan | |
dc.contributor.author | Liu, Mengyang | |
dc.contributor.author | Zhang, Feng | |
dc.contributor.author | Liang, Zhigang | |
dc.contributor.author | Cui, Chunlei | |
dc.contributor.author | Huang, Jian | |
dc.contributor.author | Li, Xia | |
dc.contributor.author | Guo, Xiuhua | |
dc.contributor.funder | National Natural Science Foundation of China | en |
dc.date.accessioned | 2020-02-18T16:57:46Z | |
dc.date.available | 2020-02-18T16:57:46Z | |
dc.date.issued | 2018-08-22 | |
dc.date.updated | 2020-02-18T16:51:41Z | |
dc.description.abstract | Radiomics has shown potential in disease diagnosis, but its feasibility for non-small cell lung carcinoma (NSCLC) subtype classification is unclear. This study aims to explore the diagnosis value of texture and colour features from positron emission tomography computed tomography (PET-CT) images in differentiation of NSCLC subtypes: adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). Two patient cohorts were retrospectively collected into a dataset of 341 18F-labeled 2-deoxy-2fluoro-d-glucose ([18F] FDG) PET-CT images of NSCLC tumours (125 ADC, 174 SqCC, and 42 cases with unknown subtype). Quantification of texture and colour features was performed using freehand regions of interest. The relation between extracted features and commonly used parameters such as age, gender, tumour size, and standard uptake value (SUVmax) was explored. To classify NSCLC subtypes, support vector machine algorithm was applied on these features and the classification performance was evaluated by receiver operating characteristic curve analysis. There was a significant difference between ADC and SqCC subtypes in texture and colour features (P < 0.05); this showed that imaging features were significantly correlated to both SUVmax and tumour diameter (P < 0.05). When evaluating classification performance, features combining texture and colour showed an AUC of 0.89 (95% CI, 0.78–1.00), colour features showed an AUC of 0.85 (95% CI, 0.71–0.99), and texture features showed an AUC of 0.68 (95% CI, 0.48–0.88). DeLong's test showed that AUC was higher for features combining texture and colour than that for texture features only (P = 0.010), but not significantly different from that for colour features only (P = 0.328). HSV colour features showed a similar performance to RGB colour features (P = 0.473). The colour features are promising in the refinement of NSCLC subtype differentiation, and features combining texture and colour of PET-CT images could result in better classification performance. | en |
dc.description.sponsorship | National Natural Science Foundation of China (81773542/81530087). | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 165018 | en |
dc.identifier.citation | Ma, Y., Feng, W., Wu, Z., Liu, M., Zhang, F., Liang, Z., Cui, C., Huang, J., Li, X. and Guo, X. (2018) 'Intra-tumoural heterogeneity characterization through texture and colour analysis for differentiation of non-small cell lung carcinoma subtypes', Physics in Medicine & Biology, 63(16), 165018 (14 pp). doi: 10.1088/1361-6560/aad648 | en |
dc.identifier.doi | 10.1088/1361-6560/aad648 | en |
dc.identifier.endpage | 14 | en |
dc.identifier.issn | 1361-6560 | |
dc.identifier.issued | 16 | en |
dc.identifier.journaltitle | Physics In Medicine & Biology | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/9665 | |
dc.identifier.volume | 63 | en |
dc.language.iso | en | en |
dc.publisher | IOP Publishing | en |
dc.relation.uri | https://iopscience.iop.org/article/10.1088/1361-6560/aad648 | |
dc.rights | © 2018 Institute of Physics and Engineering in Medicine. This is an author-created, un-copyedited version of an article accepted for publication in Physics in Medicine & Biology. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6560/aad648. As the Version of Record of this article has been published on a subscription basis, this Accepted Manuscript is be available for reuse under a CC BY-NC-ND 3.0 licence after a 12 month embargo period. | en |
dc.rights.uri | https://creativecommons.org/licences/by-nc-nd/3.0 | en |
dc.subject | Radiomics | en |
dc.subject | Positron emission tomography | en |
dc.subject | Computed tomography | en |
dc.subject | Carcinoma | en |
dc.subject | Non-small-cell lung | en |
dc.subject | Diagnostic imaging | en |
dc.subject | Colour | en |
dc.title | Intra-tumoural heterogeneity characterization through texture and colour analysis for differentiation of non-small cell lung carcinoma subtypes | en |
dc.type | Article (peer-reviewed) | en |