Electronic structure of lonsdaleite SixGe1−x alloys

dc.contributor.authorBroderick, Christopher A.
dc.contributor.funderNational University of Irelanden
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2020-11-12T11:14:06Z
dc.date.available2020-11-12T11:14:06Z
dc.date.issued2020-10-08
dc.date.updated2020-11-12T10:50:12Z
dc.description.abstractConventional diamond-structured silicon (Si) and germanium (Ge) possess indirect fundamental band gaps, limiting their potential for applications in light-emitting devices. However, SixGe1-x alloys grown in the lonsdaleite ("hexagonal diamond") phase have recently emerged as a promising directgap, Si-compatible material system, with experimental measurements demonstrating strong room temperature photoluminescence. When grown in the lonsdaleite phase, Ge possesses a narrow (0:3 eV) "pseudo-direct"fundamental band gap. Lonsdaleite Si is indirect-gap (0:8 eV), creating the possibility to achieve direct-gap lonsdaleite SixGe1-x alloys across a Gerich composition range. We present a first principles analysis of the electronic and optical properties of lonsdaleite SixGe1-x alloys, elucidate the electronic structure evolution and direct-to indirect-gap transition, and describe the impact of alloy band mixing effects on inter-band optical transition strengths.en
dc.description.sponsorshipNational University of Ireland (NUl Post-Doctoral Fellowship in the Sciences)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBroderick, C. A. (2020) 'Electronic structure of lonsdaleite SixGe1-x alloys', Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, 14-18 September, pp. 3-4. doi: 10.1109/NUSOD49422.2020.9217637en
dc.identifier.doi10.1109/NUSOD49422.2020.9217637en
dc.identifier.eissn2158-3242
dc.identifier.endpage4en
dc.identifier.isbn978-1-7281-6086-3
dc.identifier.isbn978-1-7281-6087-0
dc.identifier.issn2158-3234
dc.identifier.startpage3en
dc.identifier.urihttps://hdl.handle.net/10468/10752
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3082/IE/Multiscale Simulation and Analysis of emerging Group IV and III-V Semiconductor Materials and Devices/en
dc.relation.urihttps://www.nusod.org/2020/
dc.rights© 2020, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectElectronicen
dc.subjectOpticalen
dc.subjectlonsdaleite SixGe1-x alloysen
dc.subjectAb initio calculationsen
dc.subjectEnergy gapen
dc.subjectGe-Si alloysen
dc.subjectOptical constantsen
dc.subjectPhotoluminescenceen
dc.titleElectronic structure of lonsdaleite SixGe1−x alloysen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nusod_2020_lonsdaleite_broderick.pdf
Size:
263.13 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: