Trapped surfaces in spherical expanding open universes
dc.contributor.author | Uwe Brauer | |
dc.contributor.author | Malec, Edward | |
dc.contributor.author | Ó Murchadha, Niall | |
dc.date.accessioned | 2017-08-29T09:14:26Z | |
dc.date.available | 2017-08-29T09:14:26Z | |
dc.date.issued | 1994 | |
dc.description.abstract | Consider spherically symmetric initial data for a cosmology which, in the large part, approximates an open k = - 1, LAMBDA = 0 Friedmann-Lemeitre universe. further assume that the data are chosen so that the trace of the extrinsic curvature is a constant and that the matter field is at rest at this instant of time. One expects that no trapped surfaces appear in the data if no significant clump of excess matter is to be found. This Brief Report confirms this belief by displaying a necessary condition for the existence of trapped surfaces. This necessary condition, simply stated, says that a relatively large amount of excess-matter must be concentrated in a small volume for trapped surfaces to appear. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Brauer, U., Malec, E. and Ó Murchadha, N. (1994) 'Trapped surfaces in spherical expanding open universes', Physical Review D, 49(10), 5601-5603 (3pp). doi: 10.1103/PhysRevD.49.5601 | en |
dc.identifier.doi | 10.1103/PhysRevD.49.5601 | |
dc.identifier.endpage | 5603 | |
dc.identifier.issn | 0556-2821 | |
dc.identifier.issued | 10 | |
dc.identifier.journaltitle | Physical Review D | en |
dc.identifier.startpage | 5601 | |
dc.identifier.uri | https://hdl.handle.net/10468/4591 | |
dc.identifier.volume | 49 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.uri | https://journals.aps.org/prd/abstract/10.1103/PhysRevD.49.5601 | |
dc.rights | © 1994, American Physical Society | en |
dc.subject | Stars | en |
dc.title | Trapped surfaces in spherical expanding open universes | en |
dc.type | Note | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 3622.pdf
- Size:
- 130.83 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version