Large-area growth of MoS2 at temperatures compatible with integrating back-end-of-line functionality

dc.check.date2021-12-24
dc.check.infoAccess to this article is restricted until 12 months after publication by request of the publisher.en
dc.contributor.authorLin, Jun
dc.contributor.authorMonaghan, Scott
dc.contributor.authorSakhuja, Neha
dc.contributor.authorGity, Farzan
dc.contributor.authorKumar Jha, Ravindra
dc.contributor.authorColeman, Emma M.
dc.contributor.authorConnolly, James
dc.contributor.authorCullen, Conor P.
dc.contributor.authorWalsh, Lee A.
dc.contributor.authorMannarino, Teresa
dc.contributor.authorSchmidt, Michael
dc.contributor.authorSheehan, Brendan
dc.contributor.authorDuesberg, Georg S.
dc.contributor.authorMcEvoy, Niall
dc.contributor.authorBhat, Navakanta
dc.contributor.authorHurley, Paul K.
dc.contributor.authorPovey, Ian M.
dc.contributor.authorBhattacharjee, Shubhadeep
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderHorizon 2020en
dc.contributor.funderMinistry of Education, Indiaen
dc.contributor.funderDepartment of Electronics and Information Technology, Ministry of Communications and Information Technologyen
dc.contributor.funderDepartment of Science and Technology, Ministry of Science and Technology, Indiaen
dc.contributor.funderScience and Engineering Research Boarden
dc.date.accessioned2021-12-10T14:15:57Z
dc.date.available2021-12-10T14:15:57Z
dc.date.issued2020-12-24
dc.date.updated2021-12-10T13:32:03Z
dc.description.abstractDirect growth of transition metal dichalcogenides over large areas within the back-end-of-line (BEOL) thermal budget limit of silicon integrated circuits is a significant challenge for 3D heterogeneous integration. In this work, we report on the growth of MoS2 films (~1-10 nm) on SiO2, amorphous-Al2O3, c-plane sapphire, and glass substrates achieved at low temperatures (350 C-550 C) by chemical vapor deposition in a manufacturing-compatible 300 mm atomic layer deposition reactor. We investigate the MoS2 films as a potential material solution for BEOL logic, memory and sensing applications. Hall-effect/4-point measurements indicate that the ~10 nm MoS2 films exhibit very low carrier concentrations (1014-1015 cm-3), high resistivity, and Hall mobility values of ~0.5-17 cm2 V-1 s-1, confirmed by transistor and resistor test device results. MoS2 grain boundaries and stoichiometric defects resulting from the low thermal budget growth, while detrimental to lateral transport, can be leveraged for the integration of memory and sensing functions. Vertical transport memristor structures (Au/MoS2/Au) incorporating ~3 nm thick MoS2 films grown at 550 C (~0.75 h) show memristive switching and a stable memory window of 105 with a retention time >104 s, between the high-low resistive states. The switching set and reset voltages in these memristors demonstrate a significant reduction compared to memristors fabricated from pristine, single-crystalline MoS2 at higher temperatures, thereby reducing the energy needed for operation. Furthermore, interdigitated electrode-based gas sensors fabricated on ~5 nm thick 550 C-grown (~1.25 h) MoS2 films show excellent selectivity and sub-ppm sensitivity to NO2 gas, with a notable self-recovery at room temperature. The demonstration of large-area MoS2 direct growth at and below the BEOL thermal budget limit, alongside memristive and gas sensing functionality, advances a key enabling technology objective in emerging materials and devices for 3D heterogeneous integration.en
dc.description.sponsorshipScience Foundation Ireland (SFI-TP32AMBER-ATOM2; SFI-12/RC/2278_P2); Department of Science and Technology, Ministry of Science and Technology, India (Nanomission through the Nanoelectronics Network for Research and Application (NNetRA)); Science and Engineering Research Board (Technology Innovation National Fellowship of Abdul Kalam)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid025008en
dc.identifier.citationLin, J., Monaghan, S., Sakhuja, N., Gity, F., Kumar Jha, R., Coleman, E. M., Connolly, J., Cullen, C. P., Walsh, L. A., Mannarino, T., Schmidt, M., Sheehan, B., Duesberg, G. S., McEvoy, N., Bhat, N., Hurley, P. K., Povey, I. M. and Bhattacharjee, S. (2021) 'Large-area growth of MoS2 at temperatures compatible with integrating back-end-of-line functionality', 2D Materials, 8(2), 025008 (20pp). doi: 10.1088/2053-1583/abc460en
dc.identifier.doi10.1088/2053-1583/abc460en
dc.identifier.eissn2053-1583
dc.identifier.endpage20en
dc.identifier.issued2en
dc.identifier.journaltitle2D Materialsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/12348
dc.identifier.volume8en
dc.language.isoenen
dc.publisherIOP Publishing Ltden
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3131/IE/Investigating Emerging 2D Semiconductor Technology/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::MSCA-COFUND-FP/713567/EU/Cutting Edge Training - Cutting Edge Technology/EDGEen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/829035/EU/Quantum Engineering for Machine Learning/QUEFORMALen
dc.rights© 2020, IOP Publishing Ltd. This is an author-created, un-copyedited version of an article accepted for publication in 2D Materials. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at: https://iopscience.iop.org/article/10.1088/2053-1583/abc460en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectMoS2en
dc.subject300 mm CVDen
dc.subjectBEOL thermal budgeten
dc.subject3D heterogeneous integrationen
dc.subjectHall-effecten
dc.subjectMemristorsen
dc.subjectGas sensorsen
dc.titleLarge-area growth of MoS2 at temperatures compatible with integrating back-end-of-line functionalityen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
14605_Large-Area.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
tdmabc460supp1.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format
Description:
Supporting Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: