On the elliptic sinh–Gordon equation with integrable boundary conditions

dc.contributor.authorKilian, Martin
dc.contributor.authorSmith, G.
dc.date.accessioned2021-08-12T09:01:57Z
dc.date.available2021-08-12T09:01:57Z
dc.date.issued2021-06-28
dc.date.updated2021-08-12T08:30:31Z
dc.description.abstractWe adapt Sklyanin's K-matrix formalism to the sinh–Gordon equation, and prove that all free boundary constant mean curvature annuli in the unit ball in ${\mathbb{R}}^{3}$ are of finite type.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationKilian, M. and Smith, G. (2021) 'On the elliptic sinh–Gordon equation with integrable boundary conditions', Nonlinearity, 34(8), pp. 5119-5135. doi: 10.1088/1361-6544/abd7caen
dc.identifier.doi10.1088/1361-6544/abd7caen
dc.identifier.eissn1361-6544
dc.identifier.endpage5135en
dc.identifier.issn0951-7715
dc.identifier.issued8en
dc.identifier.journaltitleNonlinearityen
dc.identifier.startpage5119en
dc.identifier.urihttps://hdl.handle.net/10468/11733
dc.identifier.volume34en
dc.language.isoenen
dc.publisherIOP Publishingen
dc.rights© 2021, IOP Publishing Ltd & London Mathematical Society, This is an author-created, un-copyedited version of an article accepted for publication in Nonlinearity. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at: https://iopscience.iop.org/article/10.1088/1361-6544/abd7caen
dc.subjectFree boundaryen
dc.subjectConstant mean curvatureen
dc.subjectIntegrable systemsen
dc.titleOn the elliptic sinh–Gordon equation with integrable boundary conditionsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
kilian-smith181220.pdf
Size:
329.79 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: