Evaluating the surface chemistry of black phosphorus during ambient degradation
dc.contributor.author | van Druenen, Maart | |
dc.contributor.author | Davitt, Fionán | |
dc.contributor.author | Collins, Timothy W. | |
dc.contributor.author | Glynn, Colm | |
dc.contributor.author | O'Dwyer, Colm | |
dc.contributor.author | Holmes, Justin D. | |
dc.contributor.author | Collins, Gillian | |
dc.contributor.funder | Irish Research Council | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2019-01-22T12:12:18Z | |
dc.date.available | 2019-01-22T12:12:18Z | |
dc.date.issued | 2019-01-14 | |
dc.date.updated | 2019-01-22T11:58:09Z | |
dc.description.abstract | Black Phosphorus (BP) is emerging as a promising candidate for electronic, optical and energy storage applications, however its poor ambient stability remains a critical challenge. Evaluation of few-layer liquid exfoliated BP during ambient exposure using x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) allows its surface chemistry to be investigated. Oxidation of liquid exfoliated few-layer BP initially occurs through non-bridged oxide species, which convert to bridged oxide species after ambient exposure. We demonstrate the instability of these bridged oxide species which undergo hydrolysis to form volatile phosphorus oxides and evaporate from the BP surface. FTIR spectroscopy, scanning transmission electron microscopy and atomic force microscopy were used to confirm the formation of liquid oxides through a continuous oxidation cycle that results in the decomposition of BP. Furthermore, we show that the instability of few-layer BP originates from the formation of bridged oxide species. | en |
dc.description.sponsorship | Irish Research Council (Government of Ireland Postgraduate Scholarship Programme - grant number GOIPG/2015/2933) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J. D. and Collins, G. (2019) 'Evaluating the Surface Chemistry of Black Phosphorus during Ambient Degradation', Langmuir, 35(6), pp. 2172-2178. doi:10.1021/acs.langmuir.8b04190 | en |
dc.identifier.doi | 10.1021/acs.langmuir.8b04190 | |
dc.identifier.endpage | 2178 | |
dc.identifier.issn | 0743-7463 | |
dc.identifier.issn | 1520-5827 | |
dc.identifier.journaltitle | Langmuir | en |
dc.identifier.startpage | 2172 | |
dc.identifier.uri | https://hdl.handle.net/10468/7340 | |
dc.identifier.volume | 35 | |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/15/TIDA/2893/IE/Advanced Battery Materials for High Volumetric Energy Density Li-ion Batteries for Remote Off-Grid Power/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ | en |
dc.relation.uri | https://pubs.acs.org/doi/10.1021/acs.langmuir.8b04190 | en |
dc.rights | © 2019, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.8b04190 | en |
dc.subject | Black phosphorus | en |
dc.subject | 2D materials | en |
dc.subject | Phosphorene | en |
dc.subject | Ambient stability | en |
dc.subject | Degradation | en |
dc.subject | Oxidation | en |
dc.subject | X-ray photoelectron spectroscopy | en |
dc.subject | Fourier transform infrared spectroscopy | en |
dc.title | Evaluating the surface chemistry of black phosphorus during ambient degradation | en |
dc.type | Article (peer-reviewed) | en |