Learning dynamical models using motifs

Loading...
Thumbnail Image
Files
2421.pdf(707.19 KB)
Published Version
Date
2016-09
Authors
Provan, Gregory
Journal Title
Journal ISSN
Volume Title
Publisher
Sun SITE Central Europe / RWTH Aachen University
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
Automatically creating dynamical system models, M, from data is an active research area for a range of real-world applications, such as systems biology and engineering. However, the overall inference complexity increases exponentially in terms of the number of variables in M. We solve this exponential growth by using canonical representations of system motifs (building blocks) to constrain the model search during automated model generation. The motifs provide a good prior set of building blocks from which we can generate system-level models, and the canonical representation provides a theoretically sound framework for modifying the equations to improve the initial models. We present an automated method for learning dynamical models from motifs, such that the models optimize a domain-specific performance metric.We demonstrate our approach on hydraulic systems models.
Description
Keywords
Model , Motif , Canonical , Dynamical , Hydraulic
Citation
Provan, Gregory (2016) 'Learning dynamical models using motifs', in Greene, D., MacNamee, B. and Ross, R. (eds.) Proceedings of the 24th Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, Ireland, 20-21 September. CEUR Workshop Proceedings, 1751, pp. 161-172
Link to publisher’s version