Efficient on-chip green light generation via frequency upconversion in SiN–transfer-printed LN hybrid waveguides

dc.check.date2026-05-07en
dc.check.infoAccess to this article is restricted until 12 months after publication by request of the publisheren
dc.contributor.authorSumon, Md. Saiful Islamen
dc.contributor.authorVorobev, Artem S.en
dc.contributor.authorGhosh, Samiren
dc.contributor.authorAtar, Fatih Bilgeen
dc.contributor.authorMaraviglia, Nicolaen
dc.contributor.authorNikor, Sk. Shafaat Sauden
dc.contributor.authorDevarapu, Ganga Chinna Raoen
dc.contributor.authorMaddi, Chiranjeevien
dc.contributor.authorFaruque, Imad I.en
dc.contributor.authorDwivedi, Sarvagyaen
dc.contributor.authorBowman, Roberten
dc.contributor.authorO’Faolain, Liamen
dc.contributor.authorCorbett, Brianen
dc.contributor.authorArafin, Shamsulen
dc.contributor.funderResearch Irelanden
dc.contributor.funderNational Science Foundationen
dc.contributor.funderDepartment of the Economyen
dc.date.accessioned2025-06-16T09:11:37Z
dc.date.available2025-06-16T09:11:37Z
dc.date.issued2025-05-07en
dc.description.abstractWe demonstrate efficient on-chip green light generation via frequency upconversion in silicon nitride–thin-film lithium niobate (SiN-TFLN) hybrid waveguides, obtained by transfer printing LN coupons on selected areas of photonic integrated circuits (PICs). By utilizing modal phase matching (MPM), our devices achieve a high normalized conversion efficiency of 42.5% W−1cm−2 in a single-pass, 2.4-mm-long waveguide configuration. The SiN–LN transition in the waveguide inherently facilitates mode conversion, transforming a higher-order second-harmonic mode into a fundamental TE mode, ensuring coherent, narrow-linewidth, green light emission. Our waveguide platform gives rise to a wavelength shift of ∼1 nm for every 10 nm of waveguide width variation and temperature-induced wavelength tuning of ∼0.02 nm/°C.en
dc.description.sponsorshipNational Science Foundation (Grant No. 2310869)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSumon, M. S. I., Vorobev, A. S., Ghosh, S., Atar, F. B., Maraviglia, N., Nikor, S. S. S., Devarapu, G. C. R., Maddi, C., Faruque, I. I., Dwivedi, S. and Bowman, R., O’Faolain, L., Corbett, B. and Arafin, S. (2025) 'Efficient on-chip green light generation via frequency upconversion in SiN–transfer-printed LN hybrid waveguides', Optics Letters, 50(10), pp.3281-3284. https://doi.org/10.1364/OL.560034en
dc.identifier.doi10.1364/ol.560034en
dc.identifier.eissn1539-4794en
dc.identifier.endpage3284en
dc.identifier.issn0146-9592en
dc.identifier.issued10en
dc.identifier.journaltitleOptics Lettersen
dc.identifier.startpage3281en
dc.identifier.urihttps://hdl.handle.net/10468/17646
dc.identifier.volume50en
dc.language.isoenen
dc.publisherOptica Publishing Groupen
dc.relation.ispartofOptics Lettersen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/US-Ireland R&D Partnership Programme/22/US/3834/IE/Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)/en
dc.rights© 2025, Optica Publishing Group. All rights reserved.en
dc.subjectPhotonic integrated circuits (PICs)en
dc.subjectLN couponsen
dc.subjectTransfer printingen
dc.subjectOn-chip green light generationen
dc.subjectFrequency upconversion in silicon nitride–thin-film lithium niobate (SiN-TFLN) hybrid waveguidesen
dc.titleEfficient on-chip green light generation via frequency upconversion in SiN–transfer-printed LN hybrid waveguidesen
dc.typeArticle (peer-reviewed)en
dc.typejournal-articleen
oaire.citation.issue10en
oaire.citation.volume50en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Efficient on-chip green light generation.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: