Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: evidence for differential redox buffering in seedlings and cotyledon
dc.contributor.author | Karmous, Ines | |
dc.contributor.author | Trevisan, Rafael | |
dc.contributor.author | El Ferjani, Ezzedine | |
dc.contributor.author | Chaoui, Abdelilah | |
dc.contributor.author | Sheehan, David | |
dc.date.accessioned | 2018-06-15T11:47:20Z | |
dc.date.available | 2018-06-15T11:47:20Z | |
dc.date.issued | 2017 | |
dc.description.abstract | In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hatif) seeds to copper (Cu). Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin) occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination. | en |
dc.description.status | Peer reviewed | |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | e0184396 | |
dc.identifier.citation | Karmous, I., Trevisan, R., El Ferjani, E., Chaoui, A. and Sheehan, D. (2017) 'Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: evidence for differential redox buffering in seedlings and cotyledon', PLOS ONE, 12(10), e0184396 (23pp). doi: 10.1371/journal.pone.0184396 | en |
dc.identifier.doi | 10.1371/journal.pone.0184396 | |
dc.identifier.endpage | 23 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.issued | 10 | |
dc.identifier.journaltitle | PLOS ONE | en |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/10468/6357 | |
dc.identifier.volume | 12 | |
dc.language.iso | en | en |
dc.publisher | Public Library of Science | en |
dc.relation.uri | http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184396 | |
dc.rights | © 2017, Karmous et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Induced oxidative stress | en |
dc.subject | Superoxide dismutase | en |
dc.subject | Hydrogen peroxide | en |
dc.subject | Thioredoxin | en |
dc.subject | Photosynthetic organisms | en |
dc.subject | Antioxidative enzymes | en |
dc.subject | Glutathione cycle | en |
dc.subject | Abiotic stresses | en |
dc.subject | Plant-responses | en |
dc.subject | Pisum-sativum | en |
dc.title | Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: evidence for differential redox buffering in seedlings and cotyledon | en |
dc.type | Article (peer-reviewed) | en |