Mobility improvement in nanowire junctionless transistors by uniaxial strain

dc.contributor.authorRaskin, Jean-Pierre
dc.contributor.authorColinge, Jean-Pierre
dc.contributor.authorFerain, Isabelle
dc.contributor.authorKranti, Abhinav
dc.contributor.authorLee, Chi-Woo
dc.contributor.authorAkhavan, Nima Dehdashti
dc.contributor.authorYan, Ran
dc.contributor.authorRazavi, Pedram
dc.contributor.authorYu, Ran
dc.contributor.funderScience Foundation Ireland
dc.contributor.funderHigher Education Authority
dc.date.accessioned2017-07-28T11:22:08Z
dc.date.available2017-07-28T11:22:08Z
dc.date.issued2010
dc.description.abstractImprovement of current drive in n- and p-type silicon junctionless metal-oxide-semiconductor-field-effect-transistors (MOSFETs) using strain is demonstrated. Junctionless transistors have heavily doped channels with doping concentrations in excess of 10(19) cm(-3) and feature bulk conduction, as opposed to surface channel conduction. The extracted piezoresistance coefficients are in good agreement with the piezoresistive theory and the published coefficients for bulk silicon even for 10 nm thick silicon nanowires as narrow as 20 nm. These experimental results demonstrate the possibility of enhancing mobility in heavily doped silicon junctionless MOSFETs using strain technology. (C) 2010 American Institute of Physics. (doi:10.1063/1.3474608)en
dc.description.sponsorshipScience Foundation Ireland (Grant No. 05/IN/I888); Higher Education Authority (Programme for Research in Third-Level Institutions)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid42114
dc.identifier.citationRaskin, J.-P., Colinge, J.-P., Ferain, I., Kranti, A., Lee, C.-W., Akhavan, N. D., Yan, R., Razavi, P. and Yu, R. (2010) 'Mobility improvement in nanowire junctionless transistors by uniaxial strain', Applied Physics Letters, 97(4), pp. 042114. doi: 10.1063/1.3474608en
dc.identifier.doi10.1063/1.3474608
dc.identifier.endpage3
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.issued4
dc.identifier.journaltitleApplied Physics Lettersen
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/4339
dc.identifier.volume97
dc.language.isoenen
dc.publisherAIP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP1::ICT/216171/EU/Silicon-based nanostructures and nanodevices for long term nanoelectronics applications/NANOSIL
dc.relation.projectinfo:eu-repo/grantAgreement/EC/FP7::SP1::ICT/216373/EU/European platform for low-power applications on Silicon-on-Insulator Technology/EUROSOI+
dc.relation.urihttp://aip.scitation.org/doi/abs/10.1063/1.3474608
dc.rights© 2010 American Institute of Physics.This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Raskin, J.-P., Colinge, J.-P., Ferain, I., Kranti, A., Lee, C.-W., Akhavan, N. D., Yan, R., Razavi, P. and Yu, R. (2010) 'Mobility improvement in nanowire junctionless transistors by uniaxial strain', Applied Physics Letters, 97(4), pp. 042114 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3474608en
dc.subjectDoping profilesen
dc.subjectElemental semiconductorsen
dc.subjectMOSFETsen
dc.subjectNanowiresen
dc.subjectPiezoresistive devicesen
dc.subjectSemiconductor quantum wiresen
dc.subjectSiliconen
dc.subjectCarrier mobilityen
dc.titleMobility improvement in nanowire junctionless transistors by uniaxial strainen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3314.pdf
Size:
452.5 KB
Format:
Adobe Portable Document Format
Description:
Published Version