High dynamic range 100 Gbit/s PAM4 PON with SOA preamplifier using Gated Recurrent Neural Network equaliser

dc.contributor.authorMurphy, Stephen
dc.contributor.authorJamali, Fariba
dc.contributor.authorTownsend, Paul D.
dc.contributor.authorAntony, Cleitus
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2022-11-30T09:41:53Z
dc.date.available2022-11-30T09:41:53Z
dc.date.issued2022
dc.date.updated2022-11-30T09:33:13Z
dc.description.abstractWe investigate parallel multi-symbol equalisation scheme for 100Gb/s/λ PAM4 using Gated Recurrent Neural Networks and exploit SOA preamplifier gain suppression to achieve 27 dB system dynamic range below hard-decision FEC BER limit of 3.8 × 10−3 using a receiver with two gain settings.en
dc.description.sponsorshipScience Foundation Ireland (12/RC/2276P2)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMurphy, S., Jamali, F., Townsend, P. D. and Antony, C. (2022) 'High dynamic range 100 Gbit/s PAM4 PON with SOA preamplifier using Gated Recurrent Neural Network equaliser', in Leuthold, J., Harder, C., Offrein, B. and Limberger, H. (eds.) European Conference on Optical Communication (ECOC) 2022, Technical Digest Series (Optica Publishing Group, 2022), paper Th1C.6.en
dc.identifier.endpage4en
dc.identifier.isbn978-1-957171-15-9
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/13892
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.urihttps://www.ecoc2022.org/
dc.rights© 2022, the Authors. Published by IEEE. ECOC 2022 © Optica Publishing Group 2022.en
dc.subjectGated Recurrent Neural Networksen
dc.titleHigh dynamic range 100 Gbit/s PAM4 PON with SOA preamplifier using Gated Recurrent Neural Network equaliseren
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ecoc_final_draft_stephen_murphy_submission.pdf
Size:
629.96 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: