Improved performances of wideband MEMS electromagnetic vibration energy harvesters using patterned micro-magnet arrays

Loading...
Thumbnail Image
Date
2019-12
Authors
Paul, Kankana
Mallick, Dhiman
Roy, Saibal
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Research Projects
Organizational Units
Journal Issue
Abstract
The ubiquitous ambient vibrational energy is a potential candidate for solving the pertinent issue of perpetual powering of the numerous deployed wireless sensor nodes. The major roadblock in the materialization of a fully integrated high-efficiency electromagnetic vibration energy harvester is the lack of CMOS compatible magnetic materials and its integration. This work demonstrates the unique advantage of employing high performance stripe patterned array of magnets instead of conventional thin film of magnets which enhances the electromagnetic coupling factor to 53.03 mWb/m by maximizing the magnetic flux gradient within a small footprint and in a precise location. Further, it explores the benefits of employing compact in-plane moving nonlinear MEMS spring architecture, which till date is relatively unreported, that enhances the bandwidth of operation 3 times as compared with its linear counterpart at the cost of reduced peak load power. This detailed study provides a design guideline and opens up the scope for further design optimization for improving overall performance of MEMS Electromagnetic Vibration Energy Harvesters (EM-VEH).
Description
Keywords
Electromagnetic coupling , Electromagnetic devices , Energy harvesting , Magnetic flux , Magnets , Micromechanical devices , Springs (mechanical) , Telecommunication power management , Vibrations , Wireless sensor networks
Citation
Paul, K., Mallick, D. and Roy, S. (2019) 'Improved performances of wideband MEMS electromagnetic vibration energy harvesters using patterned micro-magnet arrays', 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2019, Krakow, Poland, 2-6 December, 82063206255 (6pp). doi: 10.1109/PowerMEMS49317.2019.82063206255
Link to publisher’s version
Copyright
© 2019, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.