Density functional theory predictions of the composition of atomic layer deposition-grown ternary oxides

dc.contributor.authorMurray, Ciarán A.
dc.contributor.authorElliott, Simon D.
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2016-04-26T08:31:45Z
dc.date.available2016-04-26T08:31:45Z
dc.date.issued2013-04-01
dc.date.updated2015-04-13T16:10:50Z
dc.description.abstractThe surface reactivity of various metal precursors with different alkoxide, amide, and alkyl ligands during the atomic layer deposition (ALD) of ternary oxides was determined using simplified theoretical models. Quantum chemical estimations of the Bronsted reactivity of a metal complex precursor at a hydroxylated surface are made using a gas-phase hydrolysis model. The geometry optimized structures and energies for a large suite of 17 metal precursors (including cations of Mg, Ca, Sr, Sc, Y, La, Ti, Zr, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, and Ga) with five different anionic ligands (conjugate bases of tert-butanol, tetramethyl heptanedione, dimethyl amine, isopropyl amidine, and methane) and the corresponding hydrolyzed complexes are calculated using density functional theory (DFT) methods. The theoretically computed energies are used to determine the energetics of the model reactions. These DFT models of hydrolysis are used to successfully explain the reactivity and resulting stoichiometry in terms of metal cation ratios seen experimentally for a variety of ALD-grown ternary oxide systems.en
dc.description.sponsorshipScience Foundation Ireland (SFI Grant 09.IN1.I2628)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMURRAY, C. & ELLIOTT, S. D. 2013. Density Functional Theory Predictions of the Composition of Atomic Layer Deposition-Grown Ternary Oxides. ACS Applied Materials & Interfaces, 5, 3704-3715. http://dx.doi.org/10.1021/am400310pen
dc.identifier.doi10.1021/am400310p
dc.identifier.endpage3715en
dc.identifier.issn1944-8244
dc.identifier.issued9en
dc.identifier.journaltitleACS Applied Materials & Interfacesen
dc.identifier.startpage3704en
dc.identifier.urihttps://hdl.handle.net/10468/2477
dc.identifier.volume5en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.urihttp://pubs.acs.org/doi/abs/10.1021/am400310p
dc.rights© 2013 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/am400310pen
dc.subjectDensity functional theoryen
dc.subjectTernary oxidesen
dc.subjectStoichiometryen
dc.subjectMetal precursorsen
dc.subjectLiganden
dc.subjectAtomic layer deposition (ALD)en
dc.titleDensity functional theory predictions of the composition of atomic layer deposition-grown ternary oxidesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Murray_Elliott_ACSApplMaterInterf_5_3704_2013_submitted.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: