Computing possibly optimal solutions for multi-objective constraint optimisation with tradeoffs

dc.contributor.authorWilson, Nic
dc.contributor.authorRazak, Abdul
dc.contributor.authorMarinescu, Radu
dc.date.accessioned2020-12-01T15:37:34Z
dc.date.available2020-12-01T15:37:34Z
dc.date.issued2015-07
dc.date.updated2020-11-04T13:16:46Z
dc.description.abstractComputing the set of optimal solutions for a multiobjective constraint optimisation problem can be computationally very challenging. Also, when solutions are only partially ordered, there can be a number of different natural notions of optimality, one of the most important being the notion of Possibly Optimal, i.e., optimal in at least one scenario compatible with the inter-objective tradeoffs. We develop an AND/OR Branch-and-Bound algorithm for computing the set of Possibly Optimal solutions, and compare variants of the algorithm experimentally.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationWilson, N., Razak, A. and Marinescu, R. (2015) 'Computing Possibly Optimal Solutions for Multi-Objective Constraint Optimisation with Tradeoffs', IJCAI'15: Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July, pp. 815–821. isbn: 978-1-57735-738-4en
dc.identifier.endpage821en
dc.identifier.isbn978-1-57735-738-4
dc.identifier.startpage815en
dc.identifier.urihttps://hdl.handle.net/10468/10797
dc.language.isoenen
dc.publisherAAAI Press / International Joint Conferences on Artificial Intelligenceen
dc.relation.urihttps://www.ijcai.org/Proceedings/2015
dc.rights© 2015 International Joint Conferences on Artificial Intelligence.en
dc.subjectConstraint optimisation problemen
dc.subjectAI technologyen
dc.subjectArtificial intelligence (AI)en
dc.subjectInformation systemsen
dc.titleComputing possibly optimal solutions for multi-objective constraint optimisation with tradeoffsen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijcai2015-moopt-po.pdf
Size:
493.5 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: