Energy barriers at interfaces between (100) InxGa1-xAs (0 <= x <= 0.53) and atomic-layer deposited Al2O3 and HfO2

dc.contributor.authorAfanas'ev, V. V.
dc.contributor.authorStesmans, A.
dc.contributor.authorBrammertz, G.
dc.contributor.authorDelabie, A.
dc.contributor.authorSionke, S.
dc.contributor.authorO'Mahony, Aileen
dc.contributor.authorPovey, Ian M.
dc.contributor.authorPemble, Martyn E.
dc.contributor.authorO'Connor, Éamon
dc.contributor.authorHurley, Paul K.
dc.contributor.authorNewcomb, Simon B.
dc.contributor.funderFonds Wetenschappelijk Onderzoek
dc.contributor.funderScience Foundation Ireland
dc.date.accessioned2017-07-28T11:47:32Z
dc.date.available2017-07-28T11:47:32Z
dc.date.issued2009
dc.description.abstractThe electron energy band alignment at interfaces of InxGa1-xAs (0 <= x <= 0.53) with atomic-layer deposited insulators Al2O3 and HfO2 is characterized using internal photoemission and photoconductivity experiments. The energy of the InxGa1-xAs valence band top is found to be only marginally influenced by the semiconductor composition. This result suggests that the known bandgap narrowing from 1.42 to 0.75 eV when the In content increases from 0 to 0.53 occurs mostly through downshift of the semiconductor conduction band bottom. It finds support from both electron and hole photoemission data. Similarly to the GaAs case, electron states originating from the interfacial oxidation of InxGa1-xAs lead to reduction in the electron barrier at the semiconductor/oxide interface. (C) 2009 American Institute of Physics. (DOI: 10.1063/1.3137187)en
dc.description.sponsorshipFonds Wetenschappelijk Onderzoek (FWO Vlaanderen (Grant No. 1.5.057.07)); Science Foundation Ireland (Grant No. 07/SRC/I1172)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid202110
dc.identifier.citationAfanas’ev, V. V., Stesmans, A., Brammertz, G., Delabie, A., Sionke, S., O’Mahony, A., Povey, I. M., Pemble, M. E., O’Connor, E., Hurley, P. K. and Newcomb, S. B. (2009) 'Energy barriers at interfaces between (100) InxGa1−xAs (0≤x≤0.53) and atomic-layer deposited Al2O3 and HfO2', Applied Physics Letters, 94(20), pp. 202110. doi: 10.1063/1.3137187en
dc.identifier.doi10.1063/1.3137187
dc.identifier.endpage3
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.issued20
dc.identifier.journaltitleApplied Physics Lettersen
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/4360
dc.identifier.volume94
dc.language.isoenen
dc.publisherAIP Publishingen
dc.relation.urihttp://aip.scitation.org/doi/abs/10.1063/1.3137187
dc.rights© 2009 American Institute of Physics.This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Afanas’ev, V. V., Stesmans, A., Brammertz, G., Delabie, A., Sionke, S., O’Mahony, A., Povey, I. M., Pemble, M. E., O’Connor, E., Hurley, P. K. and Newcomb, S. B. (2009) 'Energy barriers at interfaces between (100) InxGa1−xAs (0≤x≤0.53) and atomic-layer deposited Al2O3 and HfO2', Applied Physics Letters, 94(20), pp. 202110 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3137187en
dc.subjectBand offsetsen
dc.subjectSemiconductorsen
dc.subjectAluminaen
dc.subjectAtomic layer depositionen
dc.subjectConduction bandsen
dc.subjectEnergy gapen
dc.subjectGallium arsenideen
dc.subjectHafnium compoundsen
dc.subjectIII-V semiconductorsen
dc.subjectIndium compoundsen
dc.subjectNanostructured materialsen
dc.subjectOxidationen
dc.subjectPhotoconductivityen
dc.subjectPhotoemissionen
dc.subjectSemiconductor-insulator boundariesen
dc.subjectValence bandsen
dc.subjectOzoneen
dc.subjectSemiconductorsen
dc.subjectInsulatorsen
dc.titleEnergy barriers at interfaces between (100) InxGa1-xAs (0 <= x <= 0.53) and atomic-layer deposited Al2O3 and HfO2en
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3335.pdf
Size:
502.89 KB
Format:
Adobe Portable Document Format
Description:
Published Version