Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces

dc.contributor.authorOnesto, V.
dc.contributor.authorVillani, M.
dc.contributor.authorNarducci, R.
dc.contributor.authorMalara, N
dc.contributor.authorImbrogno, Alessandra
dc.contributor.authorAllione, M.
dc.contributor.authorCosta, N.
dc.contributor.authorCoppedè, N.
dc.contributor.authorZappettini, A.
dc.contributor.authorCannistraci, C. V.
dc.contributor.authorCancedda, L.
dc.contributor.authorAmato, F.
dc.contributor.authorDi Fabrizio, Enzo
dc.contributor.authorGentile, F.
dc.contributor.funderKing Abdullah University of Science and Technologyen
dc.date.accessioned2019-11-19T10:07:59Z
dc.date.available2019-11-19T10:07:59Z
dc.date.issued2019-03-11
dc.description.abstractA long-standing goal of neuroscience is a theory that explains the formation of the minicolumns in the cerebral cortex. Minicolumns are the elementary computational units of the mature neocortex. Here, we use zinc oxide nanowires with controlled topography as substrates for neural-cell growth. We observe that neuronal cells form networks where the networks characteristics exhibit a high sensitivity to the topography of the nanowires. For certain values of nanowires density and fractal dimension, neuronal networks express small world attributes, with enhanced information flows. We observe that neurons in these networks congregate in superclusters of approximately 200 neurons. We demonstrate that this number is not coincidental: the maximum number of cells in a supercluster is limited by the competition between the binding energy between cells, adhesion to the substrate, and the kinetic energy of the system. Since cortical minicolumns have similar size, similar anatomical and topological characteristics of neuronal superclusters on nanowires surfaces, we conjecture that the formation of cortical minicolumns is likewise guided by the interplay between energy minimization, information optimization and topology. For the first time, we provide a clear account of the mechanisms of formation of the minicolumns in the brain.en
dc.description.sponsorshipBAS/1/1307-01-01en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid4021en
dc.identifier.citationOnesto, V., Villani, M., Narducci, R., Malara, N., Imbrogno, A., Allione, M., Costa, N., Coppedè, N., Zappettini, A., Cannistraci, C.V. and Cancedda, L., 2019. Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces. Scientific reports, 9(1), (4021). DOI:10.1038/s41598-019-40548-zen
dc.identifier.doi10.1038/s41598-019-40548-zen
dc.identifier.eissn2045-2322
dc.identifier.endpage17en
dc.identifier.issued1en
dc.identifier.journaltitleScientific Reportsen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/9034
dc.identifier.volume9en
dc.language.isoenen
dc.publisherSpringer Natureen
dc.relation.urihttps://www.nature.com/articles/s41598-019-40548-z
dc.rights© The Author(s) 2019en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectCerebral cortexen
dc.subjectMinicolumnsen
dc.subjectNeural-cell growthen
dc.subjectZinc oxide nanowiresen
dc.titleCortical-like mini-columns of neuronal cells on zinc oxide nanowire surfacesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
s41598-019-40548-z.pdf
Size:
5.59 MB
Format:
Adobe Portable Document Format
Description:
Published version
Loading...
Thumbnail Image
Name:
41598_2019_40548_MOESM1_ESM.docx
Size:
24.36 MB
Format:
Microsoft Word XML
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: