Supervised learning techniques and their ability to classify a change of direction task strategy using kinematic and kinetic features

Thumbnail Image
4156.pdf(5.31 MB)
Accepted version
Richter, Chris
King, Enda
Falvey, Éanna
Franklyn-Miller, Andrew
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Journal Issue
This study examines the ability of commonly used supervised learning techniques to classify the execution of a maximum effort change of direction task into predefined movement pattern as well as the influence of fuzzy executions and the impact of selected features (e.g. peak knee flexion) towards classification accuracy. The experiment utilized kinematic and kinetic data from 323 male subjects with chronic athletic groin pain. All subjects undertook a biomechanical assessment and had been divided previously into 3 different movement strategies in an earlier paper. Examined supervised learning techniques were: a decision tree, an ensemble of decision trees, a discriminant analysis model, a naive Bayes classifier, a k-nearest-neighbour model, a multi-class model for support vector machines, a stepwise forward regression model, a neural network and a correlation approach. Performance (measured by comparing the predefined and classified movement pattern) was highest for the correlation approach (82 % - CI 81 to 83 %) and support vector machine (80 % - CI 79 to 80 %). The percentage of fuzzy observations within the data was between 15 and 25 %. The most informative features for classification were: hip flexion angle, ankle rotation angle, a flexion moment [ankle and hip] and thorax flexion. Findings of this study support the assumption that multiple patterns are used to execute a movement task and demonstrate that classification models can predict movement patterns with a high accuracy (83 %).
Movement classification , Subgroup analysis , Change of direction manoeuvre , Athletic groin pain , Biomechanical assessment
Richter, C., King, E., Falvey, E. and Franklyn-Miller, A. (2017) 'Supervised learning techniques and their ability to classify a change of direction task strategy using kinematic and kinetic features', Journal of Biomechanics. In Press. doi:10.1016/j.jbiomech.2017.10.025