Constant mean curvature cylinders with irregular ends

dc.contributor.authorKilian, Martin
dc.contributor.authorSchmitt, Nicholas
dc.date.accessioned2023-10-10T13:36:30Z
dc.date.available2023-10-04T14:16:29Zen
dc.date.available2023-10-10T13:36:30Z
dc.date.issued2013-07en
dc.date.updated2023-10-04T13:16:32Zen
dc.description.abstractWe prove the existence of a new class of constant mean curvature cylinders with an arbitrary number of umbilics by unitarizing the monodromy of Hill's equation.
dc.description.statusPeer revieweden
dc.description.versionPublished Version
dc.format.mimetypeapplication/pdfen
dc.identifier.citationKilian, M. and Schmitt, N. (2013) 'Constant mean curvature cylinders with irregular ends', Journal of the Mathematical Society of Japan, 65(3), pp. 775-786. doi: 10.2969/jmsj/06530775
dc.identifier.doi10.2969/jmsj/06530775
dc.identifier.eissn1881-1167
dc.identifier.endpage786
dc.identifier.issn0025-5645
dc.identifier.issued3
dc.identifier.journaltitleJournal of the Mathematical Society of Japan
dc.identifier.startpage775
dc.identifier.urihttps://hdl.handle.net/10468/15096
dc.identifier.volume65
dc.language.isoenen
dc.publisherMathematical Society of Japan
dc.rights© 2013, Mathematical Society of Japan. Published in Journal of the Mathematical Society of Japan, 65(3), pp. 775-786. doi: 10.2969/jmsj/06530775.
dc.subjectConstant mean curvature
dc.subjectCylinder
dc.subjectHill's equation
dc.titleConstant mean curvature cylinders with irregular endsen
dc.typeArticle (peer-reviewed)
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
kilian-schmitt2013.pdf
Size:
594.68 KB
Format:
Adobe Portable Document Format
Description:
Published Version