Holomorphic geometric structures on Kähler–Einstein manifolds

Loading...
Thumbnail Image
Files
KE-CHSS.pdf(528.43 KB)
Accepted Version
Date
2016-08-12
Authors
McKay, Benjamin
Journal Title
Journal ISSN
Volume Title
Publisher
Springer International Publishing AG
Research Projects
Organizational Units
Journal Issue
Abstract
We prove that the compact Kähler manifolds with c1≥0 that admit holomorphic parabolic geometries are the flat bundles of rational homogeneous varieties over complex tori. We also prove that the compact Kähler manifolds with c1≥0 that admit holomorphic cominiscule geometries are the locally Hermitian symmetric varieties.
Description
Keywords
Holomorphic cominiscule , Noncominiscule holomorphic parabolic geometry , Kähler–Einstein manifold
Citation
McKay, B. (2017) 'Holomorphic geometric structures on Kähler–Einstein manifolds', manuscripta mathematica, 153(1), pp. 1-34. doi:10.1007/s00229-016-0873-8
Link to publisher’s version
Copyright
© 2016, Springer-Verlag Berlin Heidelberg. This is a post-peer-review, pre-copyedit version of an article published in manuscripta mathematica. The final authenticated version is available online at: https://doi.org/10.1007/s00229-016-0873-8