Hexagonal SixGe1-xas a direct-gap semiconductor

dc.contributor.authorBroderick, Christopher A.
dc.contributor.funderHorizon 2020en
dc.date.accessioned2022-10-19T09:36:59Z
dc.date.available2022-10-19T09:36:59Z
dc.date.issued2022-08-22
dc.date.updated2022-10-19T09:27:58Z
dc.description.abstractThe band gap of germanium (Ge) is “weakly” indirect, with the L6c conduction band (CB) minimum lying only ≈150meV below the zone-center Γ7c CB edge in energy. This has stimulated significant interest in engineering the band structure of Ge, with the aim of realizing a direct-gap group-IV semiconductor compatible with established complementary metal-oxide-semiconductor fabrication and processing infrastructure. Recent advances in nanowire fabrication now allow growth of Ge in the metastable lonsdaleite (“hexagonal diamond”) phase, reproducibly and with high crystalline quality. In its lonsdaleite allotrope Ge is a direct- and narrow-gap semiconductor, in which the zone-center T8c CB minimum originates via back-folding of the L6c CB minimum of the conventional cubic (diamond) phase. Here, we analyze the electronic structure evolution in direct-gap lonsdaleite SixGe 1-x alloys from first principles, using a combination of alloy supercell calculations and zone unfolding. We confirm the Si composition range x≤ 25 % across which SixGe 1-x possesses a direct band gap, quantify the impact of alloy-induced band hybridization on the inter-band optical matrix elements, and describe qualitatively the consequences of the alloy band structure for carrier recombination.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleidTuD3.3en
dc.identifier.citationBroderick, Christopher A. (2022) 'Hexagonal SixGe1-xas a direct-gap semiconductor', 2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM), Cabo San Lucas, Mexico, 11-13 July. doi: 10.1109/SUM53465.2022.9858220en
dc.identifier.doi10.1109/SUM53465.2022.9858220en
dc.identifier.eissn2376-8614
dc.identifier.endpage2en
dc.identifier.isbn978-1-6654-3489-8
dc.identifier.isbn978-1-6654-3490-4
dc.identifier.issn1099-4742
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/13774
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::MSCA-IF-GF/101030927/EU/Semiconductor crystal phase engineering: new platforms for future photonics/SATORIen
dc.rights© 2022, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectBand structuresen
dc.subjectPhotonic band gapen
dc.subjectOptical device fabricationen
dc.subjectDiscrete Fourier transformsen
dc.subjectRadiative recombinationen
dc.subjectDiamondsen
dc.subjectGermaniumen
dc.titleHexagonal SixGe1-xas a direct-gap semiconductoren
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ieee_sum_2022_hexagonal_broderick.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: