The effect of particle size, morphology and C-rates on 3D structured Co 3 O 4 inverse opal conversion mode anode materials

dc.contributor.authorMcNulty, David
dc.contributor.authorGeaney, Hugh
dc.contributor.authorCarroll, Elaine
dc.contributor.authorGarvey, Shane
dc.contributor.authorLonergan, Alex
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2018-05-16T13:28:24Z
dc.date.available2018-05-16T13:28:24Z
dc.date.issued2017-02
dc.date.updated2018-05-15T23:07:15Z
dc.description.abstractEngineering Co3O4 nanoparticles into highly ordered, 3D inverse opal (IO) structures is shown to significantly improve their performance as more efficient conversion mode Li-ion anode materials. By comparison with Co3O4 microparticles, the advantages of the porous anode architecture are clearly shown. The inverse opal material markedly enhances specific capacity and capacity retention. The impact of various C rates on the rate of the initial charge demonstrates that higher rate charging (10 C) was much less destructive to the inverse opal structure than charging at a slow rate (0.1 C). Slower C rates that affect the IO structure resulted in higher specific capacities (more Li2O) as well as improved capacity retention. The IO structures cycle as CoO, which improves Coulombic efficiency and limits volumetric changes, allowing rate changes more efficiently. This work demonstrates how 3D IOs improve conversion mode anode material performance in the absence of additive or binders, thus enhancing mass transport of Li2O charge–discharge product through the open structure. This effect mitigates clogging by structural changes at slow rates (high capacity) and is beneficial to the overall electrochemical performance.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationDavid, M., Hugh, G., Elaine, C., Shane, G., Alex, L. and Colm, O. D. (2017) 'The effect of particle size, morphology and C-rates on 3D structured Co 3 O 4 inverse opal conversion mode anode materials', Materials Research Express, 4(2), 025011 (11pp). doi: 10.1088/2053-1591/aa5a26en
dc.identifier.doi10.1088/2053-1591/aa5a26
dc.identifier.endpage025011-11en
dc.identifier.issn2053-1591
dc.identifier.journaltitleMaterials Research Expressen
dc.identifier.startpage025011-1en
dc.identifier.urihttps://hdl.handle.net/10468/6128
dc.identifier.volume4en
dc.language.isoenen
dc.publisherIOP Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Technology and Innovation Development Award (TIDA)/13/TIDA/E2761/IE/LiONSKIN - Moldable Li-ion battery outer skin for electronic devices/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/en
dc.relation.urihttp://iopscience.iop.org/article/10.1088/2053-1591/aa5a26/pdf
dc.rights© 2017 IOP Publishing Ltd. This is an author-created, un-copyedited version of an article accepted for publication in Materials Research Express. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2053-1591/aa5a26en
dc.subjectInverse opalen
dc.subjectEnergy storageen
dc.subjectMaterials chemistryen
dc.titleThe effect of particle size, morphology and C-rates on 3D structured Co 3 O 4 inverse opal conversion mode anode materialsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Co3O4_IO_Paper_IOP_MRX.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: