Trapped surfaces and spherical closed cosmologies
dc.contributor.author | Malec, Edward | |
dc.contributor.author | Ó Murchadha, Niall | |
dc.date.accessioned | 2017-08-29T09:14:26Z | |
dc.date.available | 2017-08-29T09:14:26Z | |
dc.date.issued | 1993 | |
dc.description.abstract | This Article (peer-reviewed) gives necessary and sufficient conditions for the formation of trapped surfaces in spherically symmetric initial data defined on a closed manifold. Such trapped surfaces surround a region in which there occurs an enhancement of matter over the average. The conditions are posed directly in terms of physical variables and show that what one needs is a relatively large amount of excess matter confined to a small volume. The expansion of the Universe and an outward flow of matter oppose the formation of trapped surfaces; an inward flow of matter helps. The model can be regarded as a Friedmann-Lemaitre-Walker cosmology with localized spherical inhomogeneities. We show that the total excess mass cannot be too large. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Malec, E. and Ó Murchadha, N. (1993) 'Trapped surfaces and spherical closed cosmologies', Physical Review D, 47(4), 1454-1464 (11pp). doi: 10.1103/PhysRevD.47.1454 | en |
dc.identifier.doi | 10.1103/PhysRevD.47.1454 | |
dc.identifier.endpage | 1464 | |
dc.identifier.issn | 2470-0010 | |
dc.identifier.issn | 2470-0029 | |
dc.identifier.issued | 4 | |
dc.identifier.journaltitle | Physical Review D | en |
dc.identifier.startpage | 1454 | |
dc.identifier.uri | https://hdl.handle.net/10468/4592 | |
dc.identifier.volume | 47 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.uri | https://journals.aps.org/prd/abstract/10.1103/PhysRevD.47.1454 | |
dc.rights | © 1993, American Physical Society | en |
dc.subject | Stars | en |
dc.title | Trapped surfaces and spherical closed cosmologies | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 3623.pdf
- Size:
- 427.54 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version