Molecular metal oxide cluster-surface modified titanium (IV) dioxide photocatalysts

dc.contributor.authorNolan, Michael
dc.contributor.authorIwaszuk, Anna
dc.contributor.authorTada, Hiroaki
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderHigher Education Authorityen
dc.date.accessioned2017-12-19T14:41:26Z
dc.date.available2017-12-19T14:41:26Z
dc.date.issued2012-01
dc.date.updated2017-12-19T12:54:50Z
dc.description.abstractThe surface modification of TiO2 with molecular sized metal oxide clusters has recently been shown to be a promising approach for providing TiO2 with visible-light activity and/or improved UV activity. This short review summarizes the effects of the surface modification of TiO2 with the oxides of iron and tin selected from d- and p-blocks, respectively, on the photocatalytic activity. Fe(acac)(3) and [Sn(acac)(2)]Cl-2 chemisorption on the TiO2 surface occurs by ligand-exchange and ion-exchange, respectively. Taking advantage of the strong adsorption, we formed extremely small metal oxide clusters on TiO2 by the chemisorption-calcination cycle (CCC) technique with their loading amount strictly controlled. The iron oxide surface modification of P-25 (anatase/rutile = 4: 1, w/w, Degussa) gives rise to a high level of visible-light activity and a concomitant increase in the UV-light activity for the degradation of model organic pollutants. On the other hand, only the UV-light activity is increased by the tin oxide surface modification of ST-01 (anatase, Ishihara Sangyo). This striking difference can be rationalized on the basis of the material characterization and DFT calculations, which show that FeOx surface modification of rutile leads to visible-light activity, while SnO2-modified anatase enhances only the UV-light activity. We propose the mechanisms behind the FeOx and SnO2 surface modification, where the surface-to-bulk and bulk-to-surface interfacial electron transfer are taken into account in the former and the latter, respectively.en
dc.description.abstractResearch Front (Open Access)
dc.description.sponsorshipScience Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationNolan, M., Iwaszuk, A. and Tada, H. (2012) 'Molecular metal oxide cluster-surface modified titanium (IV) dioxide photocatalysts', Australian Journal of Chemistry, 65(6), pp. 624-632. doi: 10.1071/CH11451en
dc.identifier.doi10.1071/CH11451
dc.identifier.endpage632en
dc.identifier.issn0004-9425
dc.identifier.journaltitleAustralian Journal Of Chemistryen
dc.identifier.startpage624en
dc.identifier.urihttps://hdl.handle.net/10468/5197
dc.identifier.volume65en
dc.language.isoenen
dc.publisherCSIRO Publishingen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/en
dc.rights© CSIRO 2012.en
dc.subjectBilayer-type photocatalysten
dc.subjectVisible-light photocatalysisen
dc.subjectTiO2 photocatalysisen
dc.subjectBand-gapen
dc.subjectSemiconductoren
dc.subjectIrradiationen
dc.subjectTransitionen
dc.subjectParticlesen
dc.subjectAnataseen
dc.subjectDesignen
dc.subjectAdsorptionen
dc.subjectChemisorptionen
dc.subjectDegradationen
dc.subjectDensity functional theoryen
dc.subjectIon exchangeen
dc.subjectIron oxidesen
dc.subjectLoadingen
dc.subjectMetallic compoundsen
dc.subjectOrganic conductorsen
dc.subjectOxide mineralsen
dc.subjectPhotocatalysisen
dc.subjectPhotocatalystsen
dc.subjectSurfacesen
dc.subjectTinen
dc.subjectTin oxidesen
dc.subjectTitaniumen
dc.titleMolecular metal oxide cluster-surface modified titanium (IV) dioxide photocatalystsen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4429.pdf
Size:
1018.14 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: