Rate-induced tipping to metastable Zombie fires
Loading...
Files
Full Text E-thesis
Date
2023
Authors
O'Sullivan, Eoin
Journal Title
Journal ISSN
Volume Title
Publisher
University College Cork
Published Version
Abstract
Surface wildfires are generally believed to be the cause of so-called Zombie fires observed in peatlands, that disappear from the surface, smoulder underground during the winter, and ''come back to life" in the spring. Here, we propose rate-induced tipping (R-tipping) to a subsurface hot metastable state in bioactive peat soils as a main cause of Zombie fires. Our hypothesis is based on a conceptual soil-carbon model subjected to realistic changes in weather and climate patterns, including global warming scenarios and
summer heatwaves.
Mathematically speaking, R-tipping to the hot metastable state is a nonautonomous instability, due to crossing an elusive quasithreshold, in a multiple-timescale dynamical system. The instability is {\em reversible}, in the sense that the system eventually returns to its base state. To explain this instability, we provide a framework that combines a special compactification technique with concepts from geometric singular perturbation theory. This framework allows us to reduce a reversible R-tipping problem due to crossing a quasithreshold to a heteroclinic orbit problem in a singular limit. Thus, we identify generic cases of such R-tipping via: (i) unfolding of a codimension-two heteroclinic folded saddle-node type-I singularity for global warming, and (ii) analysis of a codimension-one saddle-to-saddle hetroclinic orbit for summer heatwaves, which in turn reveal new types of excitability quasithresholds.
Description
Keywords
Applied mathematics , Zombie fires , Rate-induced tipping , Canards , Geometric singular perturbation theory
Citation
O'Sullivan, E. G. 2023. Rate-induced tipping to metastable Zombie fires. PhD Thesis, University College Cork.