Flat foliations of spherically symmetric geometries

Loading...
Thumbnail Image
Files
3609.pdf(86.94 KB)
Published Version
Date
1999
Authors
Guven, Jemal
Ó Murchadha, Niall
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Research Projects
Organizational Units
Journal Issue
Abstract
We examine the solution of the constraints in spherically symmetric general relativity when spacetime has a flat spatial hypersurface. It is demonstrated explicitly that, given one hat slice, a foliation by flat slices can be consistently evolved. We show that when the sources are finite these slices do not admit singularities and we provide an explicit bound on the maximum value assumed by the extrinsic curvature. If the dominant energy condition is satisfied, the projection of the extrinsic curvature orthogonal to the radial direction possesses a definite sign. We provide both necessary and sufficient conditions for the formation of apparent horizons in this gauge which are qualitatively identical to those established earlier for extrinsic time foliations of spacetime, (J. Guven and N. O Murchadha, Phys. Rev. D 56 7658 (1997); 56, 7666 (1997)), which suggests that these conditions possess a gauge invariant validity, (S0556-2821(99)02420-0).
Description
Keywords
Classical general-relativity , Configuration-space , Apparent horizons , Initial data , Constraints , Bounds , Shell
Citation
Guven, J. and Ó Murchadha, N. (1999) 'Flat foliations of spherically symmetric geometries', Physical Review D, 60(10), 104015 (8pp). doi: 10.1103/PhysRevD.60.104015
Copyright
© 1999, American Physical Society