Multiphysics design and fabrication of 3D electroplated VIA materials topographies for next generation energy and sensor technologies

dc.contributor.authorSmallwood, Daniel C.
dc.contributor.authorMcCloskey, Paul
dc.contributor.authorRohan, James F.
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2022-08-04T15:26:11Z
dc.date.available2022-08-04T15:26:11Z
dc.date.issued2022-07-30
dc.date.updated2022-08-04T15:22:29Z
dc.description.abstract3D micro and nanoconductors have emerged as essential components of next generation energy and sensor technologies. This work investigates novel methods to tailor the topography of electroplated 3D conductive components, such as VIAs, using the FEM in COMSOL Multiphysics. This enables meeting the design specifications of flat, convex, or concave substrate-distal electroactive surfaces. Flat conductor surfaces are ideal for microbump soldering and flip-chip fabrication methods and concave/convex designs increase the number of available electrode reaction sites for sensor applications. 2D/3D multiphysics simulations are performed comprising: (1) electrochemistry modeling with the Nernst-Planck and Butler-Volmer formulations for mass transfer and reaction kinetics, and (2) a deformed geometry physics module to track the growing electrode during electrodeposition. Simulation results are compared to directly corresponding experimental work, with positive correlation. Our findings enable tailored and scalable electroactive surface processing options, which can be readily integrated into pre-existing research and industry standard operating procedures.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid111001en
dc.identifier.citationSmallwood, D. C., McCloskey, P. and Rohan, J. F. (2022) 'Multiphysics design and fabrication of 3D electroplated VIA materials topographies for next generation energy and sensor technologies', Materials and Design, 221, 111001 (11 pp). doi: 10.1016/j.matdes.2022.111001en
dc.identifier.doi10.1016/j.matdes.2022.111001en
dc.identifier.endpage11en
dc.identifier.issn0264-1275
dc.identifier.journaltitleMaterials and Designen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/13454
dc.identifier.volume221en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/15/IA/3180/IE/Advanced Integrated Power Magnetics Technology- From Atoms to Systems/en
dc.relation.urihttps://doi.org/10.1016/j.matdes.2022.111001
dc.rights© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectMultiphysicsen
dc.subjectSimulationsen
dc.subjectModelingen
dc.subjectElectroplatingen
dc.subjectTopographyen
dc.subjectInterconnecten
dc.titleMultiphysics design and fabrication of 3D electroplated VIA materials topographies for next generation energy and sensor technologiesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022_Cu_via_simulation_and_fabrication_Mat__Des.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: