There are no R(3) x S(1) vacuum gravitational instantons
dc.contributor.author | Ó Murchadha, Niall | |
dc.contributor.author | Shanahan, Hugh | |
dc.date.accessioned | 2017-09-08T09:15:50Z | |
dc.date.available | 2017-09-08T09:15:50Z | |
dc.date.issued | 1993 | |
dc.description.abstract | Gravitational instantons, solutions to the Euclidean Einstein equations, with topology R3 x S1 arise naturally in finite-temperature quantum gravity. It is shown here that all such instantons must have the same asymptotic structure as the Schwarzschild instanton. From this follows that if the Ricci tensor of such a manifold is non-negative it must be flat. Hence there is no nontrivial vacuum gravitational instanton on R3 x S1. This places a significant restriction on the instabilities of hot flat space. Another consequence is that any static vacuum Lorentzian Kaluza-Klein solution is flat. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Ó Murchadha, N. and Shanahan, H. (1993) 'There are no R(3) x S(1) vacuum gravitational instantons', Physical Review Letters, 70(11), 1576-1578 (3pp). doi: 10.1103/PhysRevLett.70.1576 | en |
dc.identifier.doi | 10.1103/PhysRevLett.70.1576 | |
dc.identifier.endpage | 1578 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.issued | 11 | |
dc.identifier.journaltitle | Physical Review Letters | en |
dc.identifier.startpage | 1576 | |
dc.identifier.uri | https://hdl.handle.net/10468/4666 | |
dc.identifier.volume | 70 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.relation.uri | https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.70.1576 | |
dc.rights | © 1993, American Physical Society | en |
dc.subject | Graviational instantons | en |
dc.subject | Schwarzschild instanton | en |
dc.subject | Euclidean Einstein equations | en |
dc.title | There are no R(3) x S(1) vacuum gravitational instantons | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 3676.pdf
- Size:
- 261.6 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version