Comparing apples and oranges?: Next generation sequencing and its impact on microbiome analysis

Thumbnail Image
2557.PDF(2.39 MB)
Published Version
Clooney, Adam G.
Fouhy, Fiona
Sleator, Roy D.
O'Driscoll, Aisling
Stanton, Catherine
Cotter, Paul D.
Claesson, Marcus J.
Journal Title
Journal ISSN
Volume Title
Public Library of Science
Research Projects
Organizational Units
Journal Issue
Rapid advancements in sequencing technologies along with falling costs present widespread opportunities for microbiome studies across a vast and diverse array of environments. These impressive technological developments have been accompanied by a considerable growth in the number of methodological variables, including sampling, storage, DNA extraction, primer pairs, sequencing technology, chemistry version, read length, insert size, and analysis pipelines, amongst others. This increase in variability threatens to compromise both the reproducibility and the comparability of studies conducted. Here we perform the first reported study comparing both amplicon and shotgun sequencing for the three leading next-generation sequencing technologies. These were applied to six human stool samples using Illumina HiSeq, MiSeq and Ion PGM shotgun sequencing, as well as amplicon sequencing across two variable 16S rRNA gene regions. Notably, we found that the factor responsible for the greatest variance in microbiota composition was the chosen methodology rather than the natural inter-individual variance, which is commonly one of the most significant drivers in microbiome studies. Amplicon sequencing suffered from this to a large extent, and this issue was particularly apparent when the 16S rRNA V1-V2 region amplicons were sequenced with MiSeq. Somewhat surprisingly, the choice of taxonomic binning software for shotgun sequences proved to be of crucial importance with even greater discriminatory power than sequencing technology and choice of amplicon. Optimal N50 assembly values for the HiSeq was obtained for 10 million reads per sample, whereas the applied MiSeq and PGM sequencing depths proved less sufficient for shotgun sequencing of stool samples. The latter technologies, on the other hand, provide a better basis for functional gene categorisation, possibly due to their longer read lengths. Hence, in addition to highlighting methodological biases, this study demonstrates the risks associated with comparing data generated using different strategies. We also recommend that laboratories with particular interests in certain microbes should optimise their protocols to accurately detect these taxa using different techniques.
Shotgun sequencing , Microbiome , Ribosomal RNA , Sequence assembly tools , Gene sequencing , Polymerase chain reaction , Taxonomy , Microbial taxonomy
Clooney, A. G., Fouhy, F., Sleator, R. D., O’ Driscoll, A., Stanton, C., Cotter, P. D. and Claesson, M. J. (2016) 'Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis', PLOS ONE, 11(2), pp. e0148028. doi:10.1371/journal.pone.0148028
Link to publisher’s version