Electrodeposition onto conductive additive-impregnated 3D printed polylactic acid electrodes

dc.contributor.authorO'Hanlon, Sally
dc.contributor.authorO'Dwyer, Colm
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Regional Development Funden
dc.date.accessioned2022-12-20T14:48:25Z
dc.date.available2022-12-20T14:48:25Z
dc.date.issued2022-08-19
dc.date.updated2022-12-20T14:40:13Z
dc.description.abstractConductive additive-impregnated polylactic acid can be coated with vanadium oxide (V2O5) by electrodeposition. By thermal pre-treatment of the thermoset printed electrode structure comprising a graphite-PLA composite, the conductivity of the composite material is improved by exposing the graphite at the outer surface by surface segregation, that is ordinarily buried within the plastic. This promotes quite effective electrodeposition under potentiostatic conditions, allowing conformal coating a complex electrode surface and structure with V2O5. The surface coating and electrode were analysed using Raman scattering spectroscopy, X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy, and details the relationship between electrodeposition parameters and the quality of the deposit on the PLA electrode.en
dc.description.sponsorshipScience Foundation Ireland (SFI) under Grant Number 14/IA/2581, cofunded the European Regional Development Fund under the AMBER award, Grant Number 12/RC/2278_2.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid082514en
dc.identifier.citationO’Hanlon, S. and O’Dwyer, C. (2022) ‘Electrodeposition onto conductive additive-impregnated 3d printed polylactic acid electrodes’, Journal of The Electrochemical Society, 169(8), 082514 (8 pp). https://doi.org/10.1149/1945-7111/ac87d8en
dc.identifier.doi10.1149/1945-7111/ac87d8en
dc.identifier.eissn1945-7111
dc.identifier.endpage8en
dc.identifier.issn0013-4651
dc.identifier.issued8en
dc.identifier.journaltitleJournal of the Electrochemical Societyen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/13995
dc.identifier.volume169en
dc.language.isoenen
dc.publisherIOP Scienceen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/en
dc.relation.urihttps://doi.org/10.1149/1945-7111/ac87d8
dc.rights© 2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: permissions@ioppublishing.org.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectElectrodepositionen
dc.subjectAdditivesen
dc.subjectCoatingsen
dc.subjectElectrodesen
dc.subjectEnergy dispersive X ray analysisen
dc.subjectGraphiteen
dc.subjectPolyestersen
dc.subjectScanning electron microscopyen
dc.subjectVanadium pentoxide;en
dc.subjectX ray diffraction analysisen
dc.titleElectrodeposition onto conductive additive-impregnated 3D printed polylactic acid electrodesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OHanlon_2022_JElectrochemSoc.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: