Electrodeposition onto conductive additive-impregnated 3D printed polylactic acid electrodes
dc.contributor.author | O'Hanlon, Sally | |
dc.contributor.author | O'Dwyer, Colm | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2022-12-20T14:48:25Z | |
dc.date.available | 2022-12-20T14:48:25Z | |
dc.date.issued | 2022-08-19 | |
dc.date.updated | 2022-12-20T14:40:13Z | |
dc.description.abstract | Conductive additive-impregnated polylactic acid can be coated with vanadium oxide (V2O5) by electrodeposition. By thermal pre-treatment of the thermoset printed electrode structure comprising a graphite-PLA composite, the conductivity of the composite material is improved by exposing the graphite at the outer surface by surface segregation, that is ordinarily buried within the plastic. This promotes quite effective electrodeposition under potentiostatic conditions, allowing conformal coating a complex electrode surface and structure with V2O5. The surface coating and electrode were analysed using Raman scattering spectroscopy, X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy, and details the relationship between electrodeposition parameters and the quality of the deposit on the PLA electrode. | en |
dc.description.sponsorship | Science Foundation Ireland (SFI) under Grant Number 14/IA/2581, cofunded the European Regional Development Fund under the AMBER award, Grant Number 12/RC/2278_2. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 082514 | en |
dc.identifier.citation | O’Hanlon, S. and O’Dwyer, C. (2022) ‘Electrodeposition onto conductive additive-impregnated 3d printed polylactic acid electrodes’, Journal of The Electrochemical Society, 169(8), 082514 (8 pp). https://doi.org/10.1149/1945-7111/ac87d8 | en |
dc.identifier.doi | 10.1149/1945-7111/ac87d8 | en |
dc.identifier.eissn | 1945-7111 | |
dc.identifier.endpage | 8 | en |
dc.identifier.issn | 0013-4651 | |
dc.identifier.issued | 8 | en |
dc.identifier.journaltitle | Journal of the Electrochemical Society | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13995 | |
dc.identifier.volume | 169 | en |
dc.language.iso | en | en |
dc.publisher | IOP Science | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2581/IE/Diffractive optics and photonic probes for efficient mouldable 3D printed battery skin materials for portable electronic devices/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/ | en |
dc.relation.uri | https://doi.org/10.1149/1945-7111/ac87d8 | |
dc.rights | © 2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: permissions@ioppublishing.org. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Electrodeposition | en |
dc.subject | Additives | en |
dc.subject | Coatings | en |
dc.subject | Electrodes | en |
dc.subject | Energy dispersive X ray analysis | en |
dc.subject | Graphite | en |
dc.subject | Polyesters | en |
dc.subject | Scanning electron microscopy | en |
dc.subject | Vanadium pentoxide; | en |
dc.subject | X ray diffraction analysis | en |
dc.title | Electrodeposition onto conductive additive-impregnated 3D printed polylactic acid electrodes | en |
dc.type | Article (peer-reviewed) | en |