Nonpolar resistive switching in Ag@TiO2 core-shell nanowires

Thumbnail Image
Manuscript_Revised.pdf(1.55 MB)
Accepted version
Manning, Hugh G.
Biswas, Subhajit
Holmes, Justin D.
Boland, John J.
Journal Title
Journal ISSN
Volume Title
American Chemical Society
Published Version
Research Projects
Organizational Units
Journal Issue
Nonpolar resistive switching (RS), a combination of bipolar and unipolar RS, is demonstrated for the first time in a single nanowire (NW) system. Exploiting Ag@TiO2 core–shell (CS) NWs synthesized by postgrowth shell formation, the switching mode is controlled by adjusting the current compliance effectively, tailoring the electrical polarity response. We demonstrate ON/OFF ratios of 105 and 107 for bipolar and unipolar modes, respectively. In the bipolar regime, retention times could be controlled up to 103 s, and in the unipolar mode, >106 s was recorded. We show how the unique dual-mode switching behavior is enabled by the defect-rich polycrystalline material structure of the TiO2 shell and the interaction between the Ag core and the Ag electrodes. These results provide a foundation for engineering nonpolar RS behaviors for memory storage and neuromorphic applications in CSNW structures.
Nanowire , Nonpolar resistive switching , Silver , Titanium dioxide , Core-shell
Manning, H. G.; Biswas, S.; Holmes, J. D.; Boland, J. J. (2017) 'Nonpolar resistive switching in Ag@TiO2 core-shell nanowires'. Acs Applied Materials & Interfaces, 9 (44), pp. 38959-38966. doi: 10.1021/acsami.7b10666
© 2017 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see