Nonpolar resistive switching in Ag@TiO2 core-shell nanowires
Loading...
Files
Accepted version
Date
2017-10-13
Authors
Manning, Hugh G.
Biswas, Subhajit
Holmes, Justin D.
Boland, John J.
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Published Version
Abstract
Nonpolar resistive switching (RS), a combination of bipolar and unipolar RS, is demonstrated for the first time in a single nanowire (NW) system. Exploiting Ag@TiO2 core–shell (CS) NWs synthesized by postgrowth shell formation, the switching mode is controlled by adjusting the current compliance effectively, tailoring the electrical polarity response. We demonstrate ON/OFF ratios of 105 and 107 for bipolar and unipolar modes, respectively. In the bipolar regime, retention times could be controlled up to 103 s, and in the unipolar mode, >106 s was recorded. We show how the unique dual-mode switching behavior is enabled by the defect-rich polycrystalline material structure of the TiO2 shell and the interaction between the Ag core and the Ag electrodes. These results provide a foundation for engineering nonpolar RS behaviors for memory storage and neuromorphic applications in CSNW structures.
Description
Keywords
Nanowire , Nonpolar resistive switching , Silver , Titanium dioxide , Core-shell
Citation
Manning, H. G.; Biswas, S.; Holmes, J. D.; Boland, J. J. (2017) 'Nonpolar resistive switching in Ag@TiO2 core-shell nanowires'. Acs Applied Materials & Interfaces, 9 (44), pp. 38959-38966. doi: 10.1021/acsami.7b10666
Link to publisher’s version
Copyright
© 2017 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/pdf/10.1021/acsami.7b10666