Nonpolar resistive switching in Ag@TiO2 core-shell nanowires
dc.contributor.author | Manning, Hugh G. | |
dc.contributor.author | Biswas, Subhajit | |
dc.contributor.author | Holmes, Justin D. | |
dc.contributor.author | Boland, John J. | |
dc.contributor.funder | European Research Council | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2018-01-04T15:36:44Z | |
dc.date.available | 2018-01-04T15:36:44Z | |
dc.date.issued | 2017-10-13 | |
dc.date.updated | 2018-01-04T12:20:03Z | |
dc.description.abstract | Nonpolar resistive switching (RS), a combination of bipolar and unipolar RS, is demonstrated for the first time in a single nanowire (NW) system. Exploiting Ag@TiO2 core–shell (CS) NWs synthesized by postgrowth shell formation, the switching mode is controlled by adjusting the current compliance effectively, tailoring the electrical polarity response. We demonstrate ON/OFF ratios of 105 and 107 for bipolar and unipolar modes, respectively. In the bipolar regime, retention times could be controlled up to 103 s, and in the unipolar mode, >106 s was recorded. We show how the unique dual-mode switching behavior is enabled by the defect-rich polycrystalline material structure of the TiO2 shell and the interaction between the Ag core and the Ag electrodes. These results provide a foundation for engineering nonpolar RS behaviors for memory storage and neuromorphic applications in CSNW structures. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Manning, H. G.; Biswas, S.; Holmes, J. D.; Boland, J. J. (2017) 'Nonpolar resistive switching in Ag@TiO2 core-shell nanowires'. Acs Applied Materials & Interfaces, 9 (44), pp. 38959-38966. doi: 10.1021/acsami.7b10666 | en |
dc.identifier.doi | 10.1021/acsami.7b10666 | |
dc.identifier.endpage | 38966 | en |
dc.identifier.issued | 44 | en |
dc.identifier.journaltitle | ACS Applied Materials & Interfaces | en |
dc.identifier.startpage | 38959 | en |
dc.identifier.uri | https://hdl.handle.net/10468/5233 | |
dc.identifier.volume | 9 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP2::ERC/321160/EU/Cognitive Networks for Intelligent Materials and Devices/COGNET | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/ | en |
dc.relation.uri | http://pubs.acs.org/doi/abs/10.1021/acsami.7b10666 | |
dc.rights | © 2017 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/pdf/10.1021/acsami.7b10666 | en |
dc.subject | Nanowire | en |
dc.subject | Nonpolar resistive switching | en |
dc.subject | Silver | en |
dc.subject | Titanium dioxide | en |
dc.subject | Core-shell | en |
dc.title | Nonpolar resistive switching in Ag@TiO2 core-shell nanowires | en |
dc.type | Article (peer-reviewed) | en |