Novel smart glove technology as a biomechanical monitoring tool

dc.contributor.authorO'Flynn, Brendan
dc.contributor.authorSachez-Torres, Javier
dc.contributor.authorTedesco, Salvatore
dc.contributor.authorDownes, B.
dc.contributor.authorConnolly, J.
dc.contributor.authorCondell, Joan
dc.contributor.authorCurran, K.
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderDepartment of Education and Learning, Northern Irelanden
dc.contributor.funderTyndall National Institute, Cork Irelanden
dc.date.accessioned2020-03-18T13:22:11Z
dc.date.available2020-03-18T13:22:11Z
dc.date.issued2015-10-30
dc.date.updated2020-03-18T13:15:22Z
dc.description.abstractDevelopments in Virtual Reality (VR) technology and its overall market have been occurring since the 1960s when Ivan Sutherland created the world’s first tracked head-mounted display (HMD) – a goggle type head gear. In society today, consumers are expecting a more immersive experience and associated tools to bridge the cyber-physical divide. This paper presents the development of a next generation smart glove microsystem to facilitate Human Computer Interaction through the integration of sensors, processors and wireless technology. The objective of the glove is to measure the range of hand joint movements, in real time and empirically in a quantitative manner. This includes accurate measurement of flexion, extension, adduction and abduction of the metacarpophalangeal (MCP), Proximal interphalangeal (PIP) and Distal interphalangeal (DIP) joints of the fingers and thumb in degrees, together with thumb-index web space movement. This system enables full real-time monitoring of complex hand movements. Commercially available gloves are not fitted with sufficient sensors for full data capture, and require calibration for each glove wearer. Unlike these current state-of-the-art data gloves, the UU / Tyndall Inertial Measurement Unit (IMU) glove uses a combination of novel stretchable substrate material and 9 degree of freedom (DOF) inertial sensors in conjunction with complex data analytics to detect joint movement. Our novel IMU data glove requires minimal calibration and is therefore particularly suited to multiple application domains such as Human Computer interfacing, Virtual reality, the healthcare environment.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationO'Flynn, B., Sachez-Torres, J., Tedesco, S., Downes, B., Connolly, J., Condell, J. and Curran, K. (2015) 'Novel Smart Glove Technology as a Biomechanical Monitoring Tool'. Sensors and Transducers, 193 (10), pp. 23-32.en
dc.identifier.eissn1726-5479
dc.identifier.endpage32en
dc.identifier.issn2306-8515
dc.identifier.issued10en
dc.identifier.journaltitleSensors and Transducersen
dc.identifier.startpage23en
dc.identifier.urihttps://hdl.handle.net/10468/9773
dc.identifier.volume193en
dc.language.isoenen
dc.publisherIFSA Publishing, S.L.en
dc.relation.urihttps://www.sensorsportal.com/HTML/DIGEST/P_2731.htm
dc.rights© 2015 by IFSA Publishing, S. L.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en
dc.subjectData gloveen
dc.subjectIMUen
dc.subjectVirtual realityen
dc.subjectArthritisen
dc.subjectJoint stiffnessen
dc.subjectHand monitoringen
dc.subjectWearable technologyen
dc.titleNovel smart glove technology as a biomechanical monitoring toolen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
P_2731.pdf
Size:
385.71 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: