Simplified PRBMs of spatial compliant multi-beam modules for planar motion

Thumbnail Image
Simplified PRBMs.pdf(483.95 KB)
Accepted Version
Hao, Guangbo
Journal Title
Journal ISSN
Volume Title
Copernicus Publications
Research Projects
Organizational Units
Journal Issue
PRBMs (pseudo-rigid-body models) have been becoming important engineering technologies/methods in the field of compliant mechanisms to simplify the design and analysis through the use of the knowledge body of rigid-body mechanisms coupling with springs. This article addresses the PRBMs of spatial multi-beam modules for planar motion, which are composed of three or more symmetrical wire/slender beams parallel to each other where the planar twisting DOF (degree of freedom) is assumed to be very small for specific applications/loading conditions. Simplified PRBMs are firstly proposed through replacing each beam in spatial multi-beam module with a rigid-body link plus two identical spherical joints at its two ends. The characteristics factor, bending stiffness and twisting stiffness for the spherical joint are determined. Load-displacement equations are then derived for a class of spatial multi-beam modules and general spatial multi-beam modules using the virtual work principle and kinematic relationships. Finally, nonlinear FEA (finite element analysis) is employed with comparisons with the PRBMs. The present PRBMs have shown the ability to predict the primary nonlinear constraint characteristics such as load-stiffening effect, cross-axis coupling in the two primary translational directions and buckling load.
Spatial multi-beam module , Rigid-body link , Load-displacement , Kinematic , Finite element analysis , Pseudo-rigid-body model
Hao, G. (2013) 'Simplified PRBMs of spatial compliant multi-beam modules for planar motion', Mechanical Sciences, 4, pp. 311-318. doi:10.5194/ms-4-311-2013
Link to publisher’s version