Comparison of control and cooperation frameworks for blended autonomy

dc.contributor.authorProvan, Gregory
dc.contributor.authorSohége, Yves
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2019-02-26T16:01:11Z
dc.date.available2019-02-26T16:01:11Z
dc.date.issued2018-06
dc.date.updated2019-02-26T15:52:28Z
dc.description.abstractAutonomous vehicles, e.g., cars, aircraft or ships, will need to accept some degree of human control for the coming years. Consequently, a method of controlling autonomous systems (ASs) that integrates control inputs from humans and machines is critical. We describe a framework for blended autonomy, in which humans and ASs interact with varying degrees of control to safely achieve a task. We empirically compare collaborative control tasks in which the human and AS have identical or conflicting objectives, under three main control frameworks: (1) leader-follower control (based on Stackelberg games); (2) blended control; and (3) switching control. We validate our results on a car steering control model, given communication delays, noise and different collaboration levels.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProvan, G. and Sohége, Y. (2018) 'Comparison of Control and Cooperation Frameworks for Blended Autonomy'. 2018 European Control Conference (ECC), Limassol, Cyprus, 12 - 15 June. doi: 10.23919/ECC.2018.8550055en
dc.identifier.doi10.23919/ECC.2018.8550055
dc.identifier.endpage7en
dc.identifier.isbn978-3-9524-2699-9
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/7544
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/13/RC/2094/IE/Lero - the Irish Software Research Centre/en
dc.relation.urihttps://ieeexplore.ieee.org/abstract/document/8550055
dc.rights© 2018 EUCA. Published by IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectAutomobilesen
dc.subjectGame theoryen
dc.subjectMobile robotsen
dc.subjectMulti-robot systemsen
dc.subjectSteering systemsen
dc.subjectBlended autonomyen
dc.subjectAutonomous vehiclesen
dc.subjectHuman controlen
dc.subjectAutonomous systemsen
dc.subjectControl inputsen
dc.subjectCollaborative control tasksen
dc.subjectBlended controlen
dc.subjectCar steering control modelen
dc.subjectASen
dc.subjectSwitching controlen
dc.subjectLeader-follower controlen
dc.subjectStackelberg gamesen
dc.subjectTask analysisen
dc.subjectLinear programmingen
dc.subjectCollaborationen
dc.subjectMathematical modelen
dc.subjectOptimal controlen
dc.titleComparison of control and cooperation frameworks for blended autonomyen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
8922_ecc2018_v3.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: