Design and hybrid control of a two-axis flexure-based positioning system

dc.contributor.authorPetri, Elena
dc.contributor.authorHao, Guangbo
dc.contributor.authorKavanagh Richard C.
dc.date.accessioned2021-04-14T09:31:37Z
dc.date.available2021-04-14T09:31:37Z
dc.date.issued2021-03-07
dc.date.updated2021-04-14T09:10:51Z
dc.description.abstractIn this paper, an accurate, large range, two-axis compliant positioning system is described and the performance of the implemented control system is analysed. The characteristics of two independently controlled axes are designed to be nominally identical and orthogonal. Both the kinematic and the kinetostatic cross-coupling interactions between the axes are statically analysed. The movement of each system axis can be modelled with linear equations when assuming a small motion range, upper bounded by about 0.2 mm. To achieve high-performance over the full permissible motion range (i.e., for movements up to ± 1 mm), the non-linearity due to stiffness has been considered and modelled to implement the controller. The control system is based on both a PID feedback controller and a force feed-forward controller based on a non-linear model. For sinusoidal or triangular reference signals, a repetitive controller (RC) based on a linear system model is added in parallel to improve system performances. Various dynamic tests have been performed, and the obtained simulation and experimental results are discussed. A suitable application of the designed RC is shown to significantly improve the accuracy of the system especially at the higher frequencies selected, thus allowing the accurate tracking of movements up to 50 Hz. The adopted encoder (with a resolution of 5 nm) allows the relative accuracy of the system to be of the order of a few percent for displacements of up to ± 1 mm from the null position.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationPetri, E., Hao, G. and Kavanagh R. C. (2021) 'Design and hybrid control of a two-axis flexure-based positioning system', International Journal of Intelligent Robotics and Applications. doi: 10.1007/s41315-021-00162-7en
dc.identifier.doi10.1007/s41315-021-00162-7en
dc.identifier.eissn2366-598X
dc.identifier.issn2366-5971
dc.identifier.journaltitleInternational Journal of Intelligent Robotics and Applicationsen
dc.identifier.urihttps://hdl.handle.net/10468/11201
dc.language.isoenen
dc.publisherSpringer Nature Switzerland AGen
dc.rights© 2021, the Authors, under exclusive licence to Springer Nature Singapore Pte Ltd. part of Springer Nature. This is a post-peer-review, pre-copyedit version of an article published in International Journal of Intelligent Robotics and Applications. The final authenticated version is available online at: https://doi.org/10.1007/s41315-021-00162-7en
dc.subjectCompliant mechanismen
dc.subjectHybrid controlen
dc.subjectPositioning systemen
dc.subjectRepetitive controlen
dc.titleDesign and hybrid control of a two-axis flexure-based positioning systemen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Accepted_Manuscript_Petri_Hao_Kavanagh.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: