Nitrogen dioxide detection with ambipolar silicon nanowire transistor sensors

dc.contributor.authorVardhan, Vaishalien
dc.contributor.authorBiswas, Subhajiten
dc.contributor.authorGhosh, Sayantanen
dc.contributor.authorTsetseris, Leonidasen
dc.contributor.authorHellebust, Stigen
dc.contributor.authorEchresh, Ahmaden
dc.contributor.authorGeorgiev, Yordan M.en
dc.contributor.authorHolmes, Justin D.en
dc.contributor.funderHorizon 2020en
dc.date.accessioned2025-05-07T13:43:42Z
dc.date.available2025-05-07T13:43:42Z
dc.date.issued2025-01-31en
dc.description.abstractSi nanowire transistors are ideal for the sensitive detection of atmospheric species due to their enhanced sensitivity to changes in the electrostatic potential at the channel surface. In this study, we present unique ambipolar Si junctionless nanowire transistors (Si-JNTs) that incorporate both n- and p-type conduction within a single device. These transistors enable scalable detection of nitrogen dioxide (NO2), a critical atmospheric oxidative pollutant, across a broad concentration range, from high levels (25–50 ppm) to low levels (250 ppb–2 ppm). Acting as an electron acceptor, NO2 generates holes and functions as a pseudodopant for Si-JNTs, altering the conductance and other device parameters. Consequently, ambipolar Si-JNTs exhibit a dual response at room temperature, reacting on both p- and n-conduction channels when exposed to gaseous NO2, thereby offering a larger parameter space compared to a unipolar device. Key characteristics of the Si-JNTs, including on-current (Ion), threshold voltage (Vth) and mobility (μ), were observed to dynamically change on both the p- and n-channels when exposed to NO2. The p-conduction channel showed superior performance across all parameters when compared to the device’s n-channel. For example, within the NO2 concentration range of 250 ppb to 2 ppm, the p-channel achieved a responsivity of 37%, significantly surpassing the n-channel’s 12.5%. Additionally, the simultaneous evolution of multiple parameters in this dual response space enhances the selectivity of Si-JNTs toward NO2 and improves their ability to distinguish between different pollutant gases, such as NO2, ammonia, sulfur dioxide and methane.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationVardhan, V., Biswas, S., Ghosh, S., Tsetseris, L., Hellebust, S., Echresh, A., Georgiev, Y. M. and Holmes, J. D. (2025) 'Nitrogen dioxide detection with ambipolar silicon nanowire transistor sensors', ACS Applied Materials & Interfaces, 17(6), pp. 9539–9553. https://doi.org/10.1021/acsami.4c18322en
dc.identifier.doi10.1021/acsami.4c18322en
dc.identifier.eissn1944-8252en
dc.identifier.endpage9553en
dc.identifier.issn1944-8244en
dc.identifier.issued6en
dc.identifier.journaltitleACS Applied Materials & Interfacesen
dc.identifier.startpage9539en
dc.identifier.urihttps://hdl.handle.net/10468/17400
dc.identifier.volume17en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofACS Applied Materials & Interfacesen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/899282/EU/Fundamental Breakthrough in Detection of Atmospheric Free Radicals/RADICALen
dc.rights© 2025, the Authors. Published by American Chemical Society. This article is licensed under the CC-BY 4.0 license.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectField effect transistoren
dc.subjectSilicon junctionless nanowire transistoren
dc.subjectAmbipolar deviceen
dc.subjectMultivariate calibrationen
dc.subjectNO2 sensoren
dc.titleNitrogen dioxide detection with ambipolar silicon nanowire transistor sensorsen
dc.typeArticle (peer-reviewed)en
dc.typejournal-articleen
oaire.citation.issue6en
oaire.citation.volume17en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vardhan-et-al-2025-nitrogen-dioxide-detection-with-ambipolar-silicon-nanowire-transistor-sensors.pdf
Size:
4.9 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: