High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy
dc.contributor.author | Venables, Dean S. | |
dc.contributor.author | Gherman, Titus | |
dc.contributor.author | Orphal, Johannes | |
dc.contributor.author | Wenger, John C. | |
dc.contributor.author | Ruth, Albert A. | |
dc.contributor.funder | Irish Research Council for Science Engineering and Technology | en |
dc.contributor.funder | European Commission | en |
dc.date.accessioned | 2012-11-21T16:54:00Z | |
dc.date.available | 2012-11-21T16:54:00Z | |
dc.date.issued | 2006-11 | |
dc.date.updated | 2012-10-23T15:11:58Z | |
dc.description.abstract | We describe the application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for the in situ detection of atmospheric trace gases and radicals (NO3, NO2, O-3, H2O) in an atmospheric simulation chamber under realistic atmospheric conditions. The length of the optical cavity across the reaction chamber is 4.5 m, which is significantly longer than in previous studies that use high finesse optical cavities to achieve high absorption sensitivity. Using a straightforward spectrometer configuration, we show that detection limits corresponding to typical atmospheric concentrations can be achieved with a measurement time of seconds to a few minutes. In particular, with only moderate reflectivity mirrors, we report a measured sensitivity of 4 pptv to NO3 in a 1 min acquisition time. The high spatial and temporal resolution of the IBBCEAS method and its pptv sensitivity to NO3 makes it useful in laboratory studies of atmospheric processes as well as having obvious potential for field measurements.We describe the application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for the in situ detection of atmospheric trace gases and radicals (NO3, NO2, O-3, H2O) in an atmospheric simulation chamber under realistic atmospheric conditions. The length of the optical cavity across the reaction chamber is 4.5 m, which is significantly longer than in previous studies that use high finesse optical cavities to achieve high absorption sensitivity. Using a straightforward spectrometer configuration, we show that detection limits corresponding to typical atmospheric concentrations can be achieved with a measurement time of seconds to a few minutes. In particular, with only moderate reflectivity mirrors, we report a measured sensitivity of 4 pptv to NO3 in a 1 min acquisition time. The high spatial and temporal resolution of the IBBCEAS method and its pptv sensitivity to NO3 makes it useful in laboratory studies of atmospheric processes as well as having obvious potential for field measurements. | en |
dc.description.sponsorship | Irish Research Council for Science Engineering and Technology (SC/2002/160); European Commission (MTKD-CT-2004-014406) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Venables, D. S.,Gherman, T.,Orphal, J.,Wenger, J. C.,Ruth*, A. A.; (2006) 'High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy'. Environmental Science & Technology, 40 (21):6758-6763. doi: 10.1021/es061076j | en |
dc.identifier.doi | 10.1021/es061076j | |
dc.identifier.endpage | 6763 | en |
dc.identifier.issn | 0013-936X | |
dc.identifier.issued | 21 | en |
dc.identifier.journaltitle | Environmental Science & Technology | en |
dc.identifier.startpage | 6758 | en |
dc.identifier.uri | https://hdl.handle.net/10468/795 | |
dc.identifier.volume | 40 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.uri | http://pubs.acs.org/doi/abs/10.1021/es061076j | |
dc.rights | Copyright © 2006 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es061076j | en |
dc.subject | Air pollution and industrial hygiene | en |
dc.subject | Broadband cavity enhanced absorption spectroscopy | en |
dc.subject | IBBCEAS | en |
dc.subject.lcsh | Atmospheric chemistry | en |
dc.title | High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Venables-EnvSci-Technol-2006-ARUTH_es061076J_manuscript_revised_resubmitted.pdf
- Size:
- 299.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: