High aspect-ratio germanium-tin alloy nanowires: Potential as highly efficient Li-ion battery anodes
dc.contributor.author | Garcia-Gil, Adrià | |
dc.contributor.author | Biswas, Subhajit | |
dc.contributor.author | McNulty, David | |
dc.contributor.author | Roy, Ahin | |
dc.contributor.author | Ryan, Kevin M. | |
dc.contributor.author | Nicolosi, Valeria | |
dc.contributor.author | Holmes, Justin D. | |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2022-11-16T15:57:40Z | |
dc.date.available | 2022-11-16T15:57:40Z | |
dc.date.issued | 2022-09-07 | |
dc.date.updated | 2022-11-10T16:54:03Z | |
dc.description.abstract | Here, the fabrication of a high aspect ratio (>440) Ge1−xSnx nanowires with super-thin (≈9 nm) diameter, much below the Bohr radius, using a simple solvothermal-like growth method under supercritical toluene conditions at a reaction temperature of 440 °C is reported. Ge1−xSnx nanowires are grown with varying amounts of Sn in Ge lattice, between 3.1 to 10.2 at%. The growth of the Ge1−xSnx alloy nanowires is achieved without any additional catalysts, and directly on current collector substrates (titanium) for application as Li-ion battery anodes. The electrochemical performance of the binder-free Ge1−xSnx nanowires as an anode material for Li-ion batteries is investigated via galvanostatic cycling and detailed analysis of differential capacity plots. The dimensions of the nanowires, and the amount of Sn in Ge, are critical to achieving a high specific capacity and capacity retention. Ge1−xSnx nanowires with the highest aspect ratios and with the lowest Sn content (3.1 at%) demonstrate exceptional capacity retention of ≈90% and 86% from the 10th to the 100th and 150th cycles respectively, while maintaining a very high specific capacity value of 1176 and 1127 mAh g−1 after the 100 and 150 cycles respectively. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.articleid | 2201170 | en |
dc.identifier.citation | Garcia-Gil, A., Biswas, S., McNulty, D., Roy, A., Ryan, K. M., Nicolosi, V. and Holmes, J. D. (2022) 'High aspect-ratio germanium-tin alloy nanowires: Potential as highly efficient Li-ion battery anodes', Advanced Materials Interfaces, 9(29), 2201170 (12pp). doi: 10.1002/admi.202201170 | en |
dc.identifier.doi | 10.1002/admi.202201170 | en |
dc.identifier.endpage | 12 | en |
dc.identifier.issn | 2196-7350 | |
dc.identifier.issued | 29 | en |
dc.identifier.journaltitle | Advanced Materials Interfaces | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13863 | |
dc.identifier.volume | 9 | en |
dc.language.iso | en | en |
dc.publisher | John Wiley & Sons, Inc. | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/ | en |
dc.relation.uri | https://onlinelibrary.wiley.com/doi/full/10.1002/admi.202201170 | |
dc.rights | © 2022, the Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Li-ion battery anode | en |
dc.subject | Germanium-tin nanowires | en |
dc.subject | Super-thin nanowires | en |
dc.subject | Supercritical growth conditions | en |
dc.title | High aspect-ratio germanium-tin alloy nanowires: Potential as highly efficient Li-ion battery anodes | en |
dc.type | Article (peer-reviewed) | en |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- Adv Materials Inter - 2022 - Garcia‐Gil - High Aspect‐ratio Germanium‐Tin Alloy Nanowires Potential as Highly Efficient.pdf
- Size:
- 1.92 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
Loading...
- Name:
- Garcia_et_al_Advanced_Materials_Interface_CORA.docx
- Size:
- 3.81 MB
- Format:
- Microsoft Word
- Description:
- Submitted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: