High aspect-ratio germanium-tin alloy nanowires: Potential as highly efficient Li-ion battery anodes

dc.contributor.authorGarcia-Gil, Adrià
dc.contributor.authorBiswas, Subhajit
dc.contributor.authorMcNulty, David
dc.contributor.authorRoy, Ahin
dc.contributor.authorRyan, Kevin M.
dc.contributor.authorNicolosi, Valeria
dc.contributor.authorHolmes, Justin D.
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2022-11-16T15:57:40Z
dc.date.available2022-11-16T15:57:40Z
dc.date.issued2022-09-07
dc.date.updated2022-11-10T16:54:03Z
dc.description.abstractHere, the fabrication of a high aspect ratio (>440) Ge1−xSnx nanowires with super-thin (≈9 nm) diameter, much below the Bohr radius, using a simple solvothermal-like growth method under supercritical toluene conditions at a reaction temperature of 440 °C is reported. Ge1−xSnx nanowires are grown with varying amounts of Sn in Ge lattice, between 3.1 to 10.2 at%. The growth of the Ge1−xSnx alloy nanowires is achieved without any additional catalysts, and directly on current collector substrates (titanium) for application as Li-ion battery anodes. The electrochemical performance of the binder-free Ge1−xSnx nanowires as an anode material for Li-ion batteries is investigated via galvanostatic cycling and detailed analysis of differential capacity plots. The dimensions of the nanowires, and the amount of Sn in Ge, are critical to achieving a high specific capacity and capacity retention. Ge1−xSnx nanowires with the highest aspect ratios and with the lowest Sn content (3.1 at%) demonstrate exceptional capacity retention of ≈90% and 86% from the 10th to the 100th and 150th cycles respectively, while maintaining a very high specific capacity value of 1176 and 1127 mAh g−1 after the 100 and 150 cycles respectively.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid2201170en
dc.identifier.citationGarcia-Gil, A., Biswas, S., McNulty, D., Roy, A., Ryan, K. M., Nicolosi, V. and Holmes, J. D. (2022) 'High aspect-ratio germanium-tin alloy nanowires: Potential as highly efficient Li-ion battery anodes', Advanced Materials Interfaces, 9(29), 2201170 (12pp). doi: 10.1002/admi.202201170en
dc.identifier.doi10.1002/admi.202201170en
dc.identifier.endpage12en
dc.identifier.issn2196-7350
dc.identifier.issued29en
dc.identifier.journaltitleAdvanced Materials Interfacesen
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/13863
dc.identifier.volume9en
dc.language.isoenen
dc.publisherJohn Wiley & Sons, Inc.en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/en
dc.relation.urihttps://onlinelibrary.wiley.com/doi/full/10.1002/admi.202201170
dc.rights© 2022, the Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectLi-ion battery anodeen
dc.subjectGermanium-tin nanowiresen
dc.subjectSuper-thin nanowiresen
dc.subjectSupercritical growth conditionsen
dc.titleHigh aspect-ratio germanium-tin alloy nanowires: Potential as highly efficient Li-ion battery anodesen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Adv Materials Inter - 2022 - Garcia‐Gil - High Aspect‐ratio Germanium‐Tin Alloy Nanowires Potential as Highly Efficient.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description:
Published Version
Loading...
Thumbnail Image
Name:
Garcia_et_al_Advanced_Materials_Interface_CORA.docx
Size:
3.81 MB
Format:
Microsoft Word
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: