Comparing thermal and chemical removal of nanoparticle stabilizing ligands - effect on catalytic activity and stability
dc.contributor.author | Collins, Gillian | |
dc.contributor.author | Davitt, Fionán | |
dc.contributor.author | O'Dwyer, Colm | |
dc.contributor.author | Holmes, Justin D. | |
dc.contributor.funder | Irish Research Council | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2018-12-03T12:30:33Z | |
dc.date.available | 2018-12-03T12:30:33Z | |
dc.date.issued | 2018-11-16 | |
dc.date.updated | 2018-11-29T09:38:43Z | |
dc.description.abstract | The use of stabilizers is an essential part of colloidal catalyst preparation, however their impact on catalytic behavior is challenging to elucidate. This report evaluates three commonly used nanoparticle (NP) stabilizing ligands, oleylamine (OAm), dodecanethiol (DDT) and the polymer polyvinylpyrrolidone (PVP). Stabilizing ligands are removed using thermal and chemical pre-treatments and the surface chemistry of the NPs is assessed using X-ray photoelectron spectroscopy (XPS). The method of ligand removal significantly altered the catalytic behavior of colloidal NPs. Chemical treatment was less effective in completely removing the capping ligands, however catalytic activity could be improved by partial ligand removal. Thermal pre-treatment decreased the activity of all the catalysts, even when the catalyst diameter and Pd surface chemistry was reasonably preserved. XPS analysis further revealed changes in the interfacial chemistry of the treated catalysts such as the formation of oxidized sulfur species formed during annealing DDT-Pd NPs and conformational changes in PVP capping ligands as a result of thermal treatment. | en |
dc.description.sponsorship | Irish Research Council (New Foundations Scheme) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Collins, G., Davitt, F., O'Dwyer, C. and Holmes, J. D. (2018) 'Comparing thermal and chemical removal of nanoparticle stabilizing ligands - effect on catalytic activity and stability', ACS Applied Nano Materials. doi:10.1021/acsanm.8b02019 | en |
dc.identifier.doi | 10.1021/acsanm.8b02019 | |
dc.identifier.issn | 2574-0970 | |
dc.identifier.journaltitle | ACS Applied Nano Materials | en |
dc.identifier.uri | https://hdl.handle.net/10468/7164 | |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/ | en |
dc.relation.uri | https://doi.org/10.1021/acsanm.8b02019 | |
dc.rights | © 2018, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Nano Materials after technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acsanm.8b02019 | en |
dc.subject | Nanoparticles | en |
dc.subject | Capping ligands | en |
dc.subject | Palladium | en |
dc.subject | Surface chemistry | en |
dc.subject | XPS | en |
dc.subject | Suzuki coupling | en |
dc.title | Comparing thermal and chemical removal of nanoparticle stabilizing ligands - effect on catalytic activity and stability | en |
dc.type | Article (peer-reviewed) | en |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: