Atomic layer deposition of alumina-coated thin-film cathodes for lithium microbatteries

dc.contributor.authorO'Donoghue, Aaron
dc.contributor.authorShine, Micheál
dc.contributor.authorPovey, Ian M.
dc.contributor.authorRohan, James F.
dc.contributor.funderScience Foundation Ireland
dc.contributor.funderEuropean Regional Development Fund
dc.contributor.funderHorizon 2020
dc.date.accessioned2024-08-30T11:03:19Z
dc.date.available2024-08-29T12:30:50Zen
dc.date.available2024-08-30T11:03:19Z
dc.date.issued2023-07-23
dc.date.updated2024-08-29T11:30:52Zen
dc.description.abstractThis work shows the electrochemical performance of sputter-deposited, binder-free lithium cobalt oxide thin films with an alumina coating deposited via atomic layer deposition for use in lithium-metal-based microbatteries. The Al2O3 coating can improve the charge–discharge kinetics and suppress the phase transition that occurs at higher potential limits where the crystalline structure of the lithium cobalt oxide is damaged due to the formation of Co4+, causing irreversible capacity loss. The electrochemical performance of the thin film is analysed by imposing 4.2, 4.4 and 4.5 V upper potential limits, which deliver improved performances for 3 nm of Al2O3, while also highlighting evidence of Al doping. Al2O3-coated lithium cobalt oxide of 3 nm is cycled at 147 µA cm−2 (~2.7 C) to an upper potential limit of 4.4 V with an initial capacity of 132 mAh g−1 (65.7 µAh cm−2 µm−1) and a capacity retention of 87% and 70% at cycle 100 and 400, respectively. This shows the high-rate capability and cycling benefits of a 3 nm Al2O3 coating.
dc.description.statusPeer revieweden
dc.description.versionPublished Version
dc.format.mimetypeapplication/pdfen
dc.identifier.articleid11207
dc.identifier.citationO’Donoghue, A., Shine, M., Povey, I.M. and Rohan, J.F. (2023) ‘Atomic layer deposition of alumina-coated thin-film cathodes for lithium microbatteries’, International Journal of Molecular Sciences, 24(13), p. 11207. Available at: sherpa romeo .
dc.identifier.doihttps://doi.org/10.3390/ijms241311207en
dc.identifier.eissn1422-0067
dc.identifier.endpage13
dc.identifier.issn1661-6596
dc.identifier.issued13
dc.identifier.journaltitleInternational Journal of Molecular Sciences
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/16239
dc.identifier.volume24
dc.language.isoenen
dc.publisherMDPI
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 2/13/RC/2077_P2/IE/CONNECT_Phase 2/
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/730957/EU/European Infrastructure Powering the Internet of Things/EnABLES
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectThin-film microbattery
dc.subjectInterface engineering
dc.subjectCathode doping
dc.subjectLithium metal anode
dc.titleAtomic layer deposition of alumina-coated thin-film cathodes for lithium microbatteries
dc.typeArticle (peer-reviewed)
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023IJMSALDonLCORohan.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
Published version