BHO-MA: Bayesian Hyperparameter Optimization with Multi-objective Acquisition
dc.contributor.author | Dogan, Vedat | en |
dc.contributor.author | Prestwich, Steven | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2025-01-21T13:22:57Z | |
dc.date.available | 2025-01-21T13:22:57Z | |
dc.date.issued | 2024-02-01 | en |
dc.description.abstract | Good hyperparameter values are crucial for the performance of machine learning models. In particular, poorly chosen values can cause under- or overfitting in regression and classification. A common approach to hyperparameter tuning is grid search, but this is crude and computationally expensive, and the literature contains several more efficient automatic methods such as Bayesian optimization. In this work, we develop a Bayesian hyperparameter optimization technique with more robust performance, by combining several acquisition functions and applying a multi-objective approach. We evaluated our method using both classification and regression tasks. We selected four data sets from the literature and compared the performance with eight popular methods. The results show that the proposed method achieved better results than all others. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Dogan, V. and Prestwich, S. (2024) 'BHO-MA: Bayesian Hyperparameter Optimization with Multi-objective Acquisition', in Pereira, A. I., Mendes, A., Fernandes, F. P., Pacheco, M. F., Coelho, J. P. and Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1981, pp 391-408. Springer, Cham. https://doi.org/10.1007/978-3-031-53025-8_27 | en |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-53025-8_27 | en |
dc.identifier.eissn | 1865-0937 | en |
dc.identifier.endpage | 408 | en |
dc.identifier.isbn | 9783031530241 | en |
dc.identifier.isbn | 9783031530258 | en |
dc.identifier.issn | 1865-0929 | en |
dc.identifier.journaltitle | Communications in Computer and Information Science | en |
dc.identifier.startpage | 391 | en |
dc.identifier.uri | https://hdl.handle.net/10468/16861 | |
dc.identifier.volume | 1981 | en |
dc.language.iso | en | en |
dc.publisher | Springer Nature | en |
dc.relation.ispartof | Communications in Computer and Information Science | en |
dc.relation.ispartof | Optimization, Learning Algorithms and Applications | en |
dc.relation.ispartof | OL2A 2023, Ponta Delgada (Portugal) and online, 27-29 September 2023 | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3918/IE/Confirm Centre for Smart Manufacturing/ | en |
dc.rights | © 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Bayesian optimization | en |
dc.subject | Multi-objective optimization | en |
dc.subject | Hyperparameter tuning | en |
dc.title | BHO-MA: Bayesian Hyperparameter Optimization with Multi-objective Acquisition | en |
dc.type | Conference item | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- BHO-MA - OL2A Conference (Camera-Ready Version).pdf
- Size:
- 649.81 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: