Evaluation of a U-shaped convolutional neural network for RCS based chipless RFID systems
dc.contributor.author | Rather, Nadeem | en |
dc.contributor.author | Simorangkir, Roy B. V. B. | en |
dc.contributor.author | Buckley, John L. | en |
dc.contributor.author | O’Flynn, Brendan | en |
dc.contributor.author | Tedesco, Salvatore | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | Enterprise Ireland | en |
dc.date.accessioned | 2023-10-31T16:04:59Z | |
dc.date.available | 2023-10-31T16:04:59Z | |
dc.date.issued | 2023-10-27 | en |
dc.description.abstract | In this paper, for the first time, a one-dimensional convolutional neural network using a U-shaped architecture is evaluated in the context of radar cross section (RCS) based chipless RFID (CRFID) systems. A 3-bit CRFID tag is utilised to create eight discernible RCS signatures representing identification numbers. A dataset of 9,600 measured RCS signatures was utilised for training, validating, and testing the model. The dataset was collected by placing the tag on varying surface shapes, orientations, and read ranges to enable robust detection. The root mean square error (RMSE) metric was used to assess the model’s performance. The achieved RMSE was 0.11 (1.5%). The low RMSE score demonstrates the effectiveness that this type of architecture has in accurately detecting and generalizing the encoded information from the RCS signatures. | en |
dc.description.sponsorship | Enterprise Ireland (Disruptive Technologies Innovation Fund EI-DT20180291-A) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Rather, N., Simorangkir, R. B. V. B., Buckley, J. L., O’Flynn, B. and Tedesco, S. (2023) 'Evaluation of a U-shaped convolutional neural network for RCS based chipless RFID systems', 2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA), Aveiro, Portugal, 4-6 September, pp. 65-66. doi: 10.1109/RFID-TA58140.2023.10290467 | en |
dc.identifier.doi | 10.1109/rfid-ta58140.2023.10290467 | en |
dc.identifier.eissn | 2836-3574 | en |
dc.identifier.endpage | 66 | en |
dc.identifier.isbn | 979-8-3503-3353-4 | en |
dc.identifier.isbn | 979-8-3503-3354-1 | en |
dc.identifier.issn | 2377-018X | en |
dc.identifier.startpage | 65 | en |
dc.identifier.uri | https://hdl.handle.net/10468/15170 | |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.ispartof | 2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA), Aveiro, Portugal, 4-6 September. | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3835/IE/VistaMilk Centre/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/13/RC/2077/IE/CONNECT: The Centre for Future Networks & Communications/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3918/IE/Confirm Centre for Smart Manufacturing/ | en |
dc.rights | © 2023, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en |
dc.subject | Chipless RFID | en |
dc.subject | Convolutional neural networks | en |
dc.subject | Electromagnetics | en |
dc.subject | Radar cross section | en |
dc.subject | Deep learning | en |
dc.subject | RFID | en |
dc.subject | Robots | en |
dc.title | Evaluation of a U-shaped convolutional neural network for RCS based chipless RFID systems | en |
dc.type | Conference item | en |