Evaluation of a U-shaped convolutional neural network for RCS based chipless RFID systems

dc.contributor.authorRather, Nadeemen
dc.contributor.authorSimorangkir, Roy B. V. B.en
dc.contributor.authorBuckley, John L.en
dc.contributor.authorO’Flynn, Brendanen
dc.contributor.authorTedesco, Salvatoreen
dc.contributor.funderEuropean Regional Development Funden
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEnterprise Irelanden
dc.date.accessioned2023-10-31T16:04:59Z
dc.date.available2023-10-31T16:04:59Z
dc.date.issued2023-10-27en
dc.description.abstractIn this paper, for the first time, a one-dimensional convolutional neural network using a U-shaped architecture is evaluated in the context of radar cross section (RCS) based chipless RFID (CRFID) systems. A 3-bit CRFID tag is utilised to create eight discernible RCS signatures representing identification numbers. A dataset of 9,600 measured RCS signatures was utilised for training, validating, and testing the model. The dataset was collected by placing the tag on varying surface shapes, orientations, and read ranges to enable robust detection. The root mean square error (RMSE) metric was used to assess the model’s performance. The achieved RMSE was 0.11 (1.5%). The low RMSE score demonstrates the effectiveness that this type of architecture has in accurately detecting and generalizing the encoded information from the RCS signatures.en
dc.description.sponsorshipEnterprise Ireland (Disruptive Technologies Innovation Fund EI-DT20180291-A)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRather, N., Simorangkir, R. B. V. B., Buckley, J. L., O’Flynn, B. and Tedesco, S. (2023) 'Evaluation of a U-shaped convolutional neural network for RCS based chipless RFID systems', 2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA), Aveiro, Portugal, 4-6 September, pp. 65-66. doi: 10.1109/RFID-TA58140.2023.10290467en
dc.identifier.doi10.1109/rfid-ta58140.2023.10290467en
dc.identifier.eissn2836-3574en
dc.identifier.endpage66en
dc.identifier.isbn979-8-3503-3353-4en
dc.identifier.isbn979-8-3503-3354-1en
dc.identifier.issn2377-018Xen
dc.identifier.startpage65en
dc.identifier.urihttps://hdl.handle.net/10468/15170
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartof2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA), Aveiro, Portugal, 4-6 September.en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3835/IE/VistaMilk Centre/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/13/RC/2077/IE/CONNECT: The Centre for Future Networks & Communications/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2289/IE/INSIGHT - Irelands Big Data and Analytics Research Centre/en
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3918/IE/Confirm Centre for Smart Manufacturing/en
dc.rights© 2023, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectChipless RFIDen
dc.subjectConvolutional neural networksen
dc.subjectElectromagneticsen
dc.subjectRadar cross sectionen
dc.subjectDeep learningen
dc.subjectRFIDen
dc.subjectRobotsen
dc.titleEvaluation of a U-shaped convolutional neural network for RCS based chipless RFID systemsen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
20230630064004_145548_1078.pdf
Size:
824.93 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: