An innovative machine learning approach to improve MPTCP performance
dc.contributor.author | Silva, Fábio | |
dc.contributor.author | Togou, Mohammed Amine | |
dc.contributor.author | Muntean, Gabriel-Miro | |
dc.contributor.funder | Horizon 2020 | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.date.accessioned | 2022-10-11T15:28:11Z | |
dc.date.available | 2022-10-11T15:28:11Z | |
dc.date.issued | 2020-07 | |
dc.date.updated | 2022-10-11T15:14:51Z | |
dc.description.abstract | This paper presents, describes and evaluates the Machine Learning Performance Monitor (MLPM), an innovative Machine Learning (ML) approach to fore cast and extrapolate the performance of several network features (e.g., latency, throughput) in a Multipath TCP(MPTCP) subflow pool. MLPM uses linear regression to predict the performance of network features along with Artificial Neural Network linear classifier to choose the best subflow (i.e., network path) capable of delivering the best performance to a given set of the network features. Results show that MLPM delivers better performance in terms of throughput and latency compared to existing schemes as it improves the MPTCP scheduler performance. | en |
dc.description.sponsorship | Science Foundation Ireland (16/SP/3804; 12/RC/2289_P2) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Silva, F., Togou, M. A. and Muntean, G.-M. (2020) ‘An innovative machine learning approach to improve MPTCP performance', 2020 International Conference on High Performance Computing and Simulation (HPCS 2020), Barcelona, Spain, 20-24 July. | en |
dc.identifier.endpage | 8 | en |
dc.identifier.startpage | 1 | en |
dc.identifier.uri | https://hdl.handle.net/10468/13764 | |
dc.language.iso | en | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/H2020::IA/688503/EU/Networked Labs for Training in Sciences and Technologies for Information and Communication/NEWTON | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/H2020::RIA/870610/EU/Opera co-creation for a social transformation/TRACTION | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/13/RC/2094/IE/Lero - the Irish Software Research Centre/ | en |
dc.rights | © 2020, the Authors. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Linear regression | en |
dc.subject | Machine learning | en |
dc.subject | Multipath TCP | en |
dc.subject | Supervised learning | en |
dc.subject | Neural network | en |
dc.title | An innovative machine learning approach to improve MPTCP performance | en |
dc.type | Conference item | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Silva_Fabio_-_Paper_Id_2_-_HPCS2020_MCWN2020_(1).pdf
- Size:
- 535.98 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: